Control of Higher–Dimensional PDEs

Control of Higher–Dimensional PDEs
Title Control of Higher–Dimensional PDEs PDF eBook
Author Thomas Meurer
Publisher Springer Science & Business Media
Pages 373
Release 2012-08-13
Genre Technology & Engineering
ISBN 3642300154

Download Control of Higher–Dimensional PDEs Book in PDF, Epub and Kindle

This monograph presents new model-based design methods for trajectory planning, feedback stabilization, state estimation, and tracking control of distributed-parameter systems governed by partial differential equations (PDEs). Flatness and backstepping techniques and their generalization to PDEs with higher-dimensional spatial domain lie at the core of this treatise. This includes the development of systematic late lumping design procedures and the deduction of semi-numerical approaches using suitable approximation methods. Theoretical developments are combined with both simulation examples and experimental results to bridge the gap between mathematical theory and control engineering practice in the rapidly evolving PDE control area. The text is divided into five parts featuring: - a literature survey of paradigms and control design methods for PDE systems - the first principle mathematical modeling of applications arising in heat and mass transfer, interconnected multi-agent systems, and piezo-actuated smart elastic structures - the generalization of flatness-based trajectory planning and feedforward control to parabolic and biharmonic PDE systems defined on general higher-dimensional domains - an extension of the backstepping approach to the feedback control and observer design for parabolic PDEs with parallelepiped domain and spatially and time varying parameters - the development of design techniques to realize exponentially stabilizing tracking control - the evaluation in simulations and experiments Control of Higher-Dimensional PDEs — Flatness and Backstepping Designs is an advanced research monograph for graduate students in applied mathematics, control theory, and related fields. The book may serve as a reference to recent developments for researchers and control engineers interested in the analysis and control of systems governed by PDEs.

Boundary Control of PDEs

Boundary Control of PDEs
Title Boundary Control of PDEs PDF eBook
Author Miroslav Krstic
Publisher SIAM
Pages 197
Release 2008-01-01
Genre Mathematics
ISBN 0898718600

Download Boundary Control of PDEs Book in PDF, Epub and Kindle

The text's broad coverage includes parabolic PDEs; hyperbolic PDEs of first and second order; fluid, thermal, and structural systems; delay systems; PDEs with third and fourth derivatives in space (including variants of linearized Ginzburg-Landau, Schrodinger, Kuramoto-Sivashinsky, KdV, beam, and Navier-Stokes equations); real-valued as well as complex-valued PDEs; stabilization as well as motion planning and trajectory tracking for PDEs; and elements of adaptive control for PDEs and control of nonlinear PDEs.

Partial Differential Equations

Partial Differential Equations
Title Partial Differential Equations PDF eBook
Author Walter A. Strauss
Publisher John Wiley & Sons
Pages 467
Release 2007-12-21
Genre Mathematics
ISBN 0470054565

Download Partial Differential Equations Book in PDF, Epub and Kindle

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems

Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems
Title Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems PDF eBook
Author Irena Lasiecka
Publisher Cambridge University Press
Pages 678
Release 2000-02-13
Genre Mathematics
ISBN 9780521434089

Download Control Theory for Partial Differential Equations: Volume 1, Abstract Parabolic Systems Book in PDF, Epub and Kindle

Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations
Title Finite Difference Methods for Ordinary and Partial Differential Equations PDF eBook
Author Randall J. LeVeque
Publisher SIAM
Pages 356
Release 2007-01-01
Genre Mathematics
ISBN 9780898717839

Download Finite Difference Methods for Ordinary and Partial Differential Equations Book in PDF, Epub and Kindle

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Real-time PDE-constrained Optimization

Real-time PDE-constrained Optimization
Title Real-time PDE-constrained Optimization PDF eBook
Author Lorenz T. Biegler
Publisher SIAM
Pages 335
Release 2007-01-01
Genre Differential equations, Partial
ISBN 9780898718935

Download Real-time PDE-constrained Optimization Book in PDF, Epub and Kindle

Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.

Optimization and Control for Partial Differential Equations

Optimization and Control for Partial Differential Equations
Title Optimization and Control for Partial Differential Equations PDF eBook
Author Roland Herzog
Publisher Walter de Gruyter GmbH & Co KG
Pages 474
Release 2022-03-07
Genre Mathematics
ISBN 3110695987

Download Optimization and Control for Partial Differential Equations Book in PDF, Epub and Kindle

This book highlights new developments in the wide and growing field of partial differential equations (PDE)-constrained optimization. Optimization problems where the dynamics evolve according to a system of PDEs arise in science, engineering, and economic applications and they can take the form of inverse problems, optimal control problems or optimal design problems. This book covers new theoretical, computational as well as implementation aspects for PDE-constrained optimization problems under uncertainty, in shape optimization, and in feedback control, and it illustrates the new developments on representative problems from a variety of applications.