Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations

Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations
Title Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations PDF eBook
Author Nawaf Bou-Rabee
Publisher American Mathematical Soc.
Pages 136
Release 2019-01-08
Genre Mathematics
ISBN 1470431815

Download Continuous-Time Random Walks for the Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

This paper introduces time-continuous numerical schemes to simulate stochastic differential equations (SDEs) arising in mathematical finance, population dynamics, chemical kinetics, epidemiology, biophysics, and polymeric fluids. These schemes are obtained by spatially discretizing the Kolmogorov equation associated with the SDE in such a way that the resulting semi-discrete equation generates a Markov jump process that can be realized exactly using a Monte Carlo method. In this construction the jump size of the approximation can be bounded uniformly in space, which often guarantees that the schemes are numerically stable for both finite and long time simulation of SDEs.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations
Title Applied Stochastic Differential Equations PDF eBook
Author Simo Särkkä
Publisher Cambridge University Press
Pages 327
Release 2019-05-02
Genre Business & Economics
ISBN 1316510085

Download Applied Stochastic Differential Equations Book in PDF, Epub and Kindle

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations
Title Numerical Solution of Stochastic Differential Equations PDF eBook
Author Peter E. Kloeden
Publisher Springer Science & Business Media
Pages 666
Release 2013-04-17
Genre Mathematics
ISBN 3662126168

Download Numerical Solution of Stochastic Differential Equations Book in PDF, Epub and Kindle

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP

Statistics of Random Processes II

Statistics of Random Processes II
Title Statistics of Random Processes II PDF eBook
Author Robert S. Liptser
Publisher Springer Science & Business Media
Pages 409
Release 2013-03-14
Genre Mathematics
ISBN 3662100282

Download Statistics of Random Processes II Book in PDF, Epub and Kindle

"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW

Stochastic Integration and Differential Equations

Stochastic Integration and Differential Equations
Title Stochastic Integration and Differential Equations PDF eBook
Author Philip Protter
Publisher Springer
Pages 430
Release 2013-12-21
Genre Mathematics
ISBN 3662100614

Download Stochastic Integration and Differential Equations Book in PDF, Epub and Kindle

It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Wave Propagation and Time Reversal in Randomly Layered Media

Wave Propagation and Time Reversal in Randomly Layered Media
Title Wave Propagation and Time Reversal in Randomly Layered Media PDF eBook
Author Jean-Pierre Fouque
Publisher Springer Science & Business Media
Pages 623
Release 2007-06-30
Genre Science
ISBN 0387498087

Download Wave Propagation and Time Reversal in Randomly Layered Media Book in PDF, Epub and Kindle

The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.

Random Walk and the Heat Equation

Random Walk and the Heat Equation
Title Random Walk and the Heat Equation PDF eBook
Author Gregory F. Lawler
Publisher American Mathematical Soc.
Pages 170
Release 2010-11-22
Genre Mathematics
ISBN 0821848291

Download Random Walk and the Heat Equation Book in PDF, Epub and Kindle

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.