Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures
Title | Continuous And Discontinuous Piecewise-smooth One-dimensional Maps: Invariant Sets And Bifurcation Structures PDF eBook |
Author | Viktor Avrutin |
Publisher | World Scientific |
Pages | 649 |
Release | 2019-05-28 |
Genre | Mathematics |
ISBN | 9811204713 |
The investigation of dynamics of piecewise-smooth maps is both intriguing from the mathematical point of view and important for applications in various fields, ranging from mechanical and electrical engineering up to financial markets. In this book, we review the attracting and repelling invariant sets of continuous and discontinuous one-dimensional piecewise-smooth maps. We describe the bifurcations occurring in these maps (border collision and degenerate bifurcations, as well as homoclinic bifurcations and the related transformations of chaotic attractors) and survey the basic scenarios and structures involving these bifurcations. In particular, the bifurcation structures in the skew tent map and its application as a border collision normal form are discussed. We describe the period adding and incrementing bifurcation structures in the domain of regular dynamics of a discontinuous piecewise-linear map, and the related bandcount adding and incrementing structures in the domain of robust chaos. Also, we explain how these structures originate from particular codimension-two bifurcation points which act as organizing centers. In addition, we present the map replacement technique which provides a powerful tool for the description of bifurcation structures in piecewise-linear and other form of invariant maps to a much further extent than the other approaches.
Piecewise-smooth Dynamical Systems
Title | Piecewise-smooth Dynamical Systems PDF eBook |
Author | Mario Bernardo |
Publisher | Springer Science & Business Media |
Pages | 497 |
Release | 2008-01-01 |
Genre | Mathematics |
ISBN | 1846287081 |
This book presents a coherent framework for understanding the dynamics of piecewise-smooth and hybrid systems. An informal introduction expounds the ubiquity of such models via numerous. The results are presented in an informal style, and illustrated with many examples. The book is aimed at a wide audience of applied mathematicians, engineers and scientists at the beginning postgraduate level. Almost no mathematical background is assumed other than basic calculus and algebra.
Advances in Discrete Dynamical Systems, Difference Equations and Applications
Title | Advances in Discrete Dynamical Systems, Difference Equations and Applications PDF eBook |
Author | Saber Elaydi |
Publisher | Springer Nature |
Pages | 534 |
Release | 2023-03-25 |
Genre | Mathematics |
ISBN | 303125225X |
This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.
One-Dimensional Dynamics
Title | One-Dimensional Dynamics PDF eBook |
Author | Welington de Melo |
Publisher | Springer |
Pages | 606 |
Release | 2011-12-16 |
Genre | Mathematics |
ISBN | 9783642780455 |
One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).
Nonlinear Economic Dynamics and Financial Modelling
Title | Nonlinear Economic Dynamics and Financial Modelling PDF eBook |
Author | Roberto Dieci |
Publisher | Springer |
Pages | 384 |
Release | 2014-07-26 |
Genre | Business & Economics |
ISBN | 3319074709 |
This book reflects the state of the art on nonlinear economic dynamics, financial market modelling and quantitative finance. It contains eighteen papers with topics ranging from disequilibrium macroeconomics, monetary dynamics, monopoly, financial market and limit order market models with boundedly rational heterogeneous agents to estimation, time series modelling and empirical analysis and from risk management of interest-rate products, futures price volatility and American option pricing with stochastic volatility to evaluation of risk and derivatives of electricity market. The book illustrates some of the most recent research tools in these areas and will be of interest to economists working in economic dynamics and financial market modelling, to mathematicians who are interested in applying complexity theory to economics and finance and to market practitioners and researchers in quantitative finance interested in limit order, futures and electricity market modelling, derivative pricing and risk management.
Cycles, Growth and the Great Recession
Title | Cycles, Growth and the Great Recession PDF eBook |
Author | Annalisa Cristini |
Publisher | Routledge |
Pages | 261 |
Release | 2014-11-13 |
Genre | Business & Economics |
ISBN | 1317751132 |
Cycles, Growth and the Great Recession is a collection of papers that assess the nature and role of the business cycle in contemporary economies. These assessments are made in the context of the financial market instability that distinguishes the Great Recession from previous post-war slowdowns. Theorists and applied scholars in the fields of economics and mathematical economics discuss various approaches to understanding cycles and growth, and present mathematical and applied macro models to show how uncertainty shapes cycles by affecting the economic agent choice. Also included is an empirical section that investigates how the Great Recession affected households’ housing wealth, labour productivity and migration decisions. This book aims to: Propose a novel understanding of the business cycle by comparing the approaches of various scholars, starting from Hyman Minsky and Piero Ferri. Show that uncertainty is a main feature of the business cycle that affects decision-making and economic behaviour in general. Explain with mathematical models how the behaviour of economic agents can lead to cyclical paths for modern developed economies. Augment theory with empirical analysis of some central issues related to the Great Recession. This book comprises an original view of such widely discussed subjects as business cycles, uncertainty, economic growth and the Great Recession, constructed around theory, models and applications.
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
Title | Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields PDF eBook |
Author | John Guckenheimer |
Publisher | Springer Science & Business Media |
Pages | 475 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1461211409 |
An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.