Conservation Laws in Variational Thermo-Hydrodynamics
Title | Conservation Laws in Variational Thermo-Hydrodynamics PDF eBook |
Author | S. Sieniutycz |
Publisher | Springer Science & Business Media |
Pages | 467 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 9401110840 |
This study is one of the first attempts to bridge the theoretical models of variational dynamics of perfect fluids and some practical approaches worked out in chemical and mechanical engineering in the field newly called thermo-hydrodynamics. In recent years, applied mathematicians and theoretical physicists have made significant progress in formulating analytical tools to describe fluid dynamics through variational methods. These tools are much loved by theoretists, and rightly so, because they are quite powerful and beautiful theoretical tools. Chemists, physicists and engineers, however, are limited in their ability to use these tools, because presently they are applicable only to "perfect fluids" (i. e. those fluids without viscosity, heat transfer, diffusion and chemical reactions). To be useful, a model must take into account important transport and rate phenomena, which are inherent to real fluid behavior and which cannot be ignored. This monograph serves to provide the beginnings of a means by which to extend the mathematical analyses to include the basic effects of thermo-hydrodynamics. In large part a research report, this study uses variational calculus as a basic theoretical tool, without undo compromise to the integrity of the mathematical analyses, while emphasizing the conservation laws of real fluids in the context of underlying thermodynamics --reversible or irreversible. The approach of this monograph is a new generalizing approach, based on Nother's theorem and variational calculus, which leads to the energy-momentum tensor and the related conservation or balance equations in fluids.
Conservation Laws in Variational Thermo-Hydrodynamics
Title | Conservation Laws in Variational Thermo-Hydrodynamics PDF eBook |
Author | S. Sieniutycz |
Publisher | Springer |
Pages | 448 |
Release | 2012-01-11 |
Genre | Mathematics |
ISBN | 9789401110853 |
This study is one of the first attempts to bridge the theoretical models of variational dynamics of perfect fluids and some practical approaches worked out in chemical and mechanical engineering in the field newly called thermo-hydrodynamics. In recent years, applied mathematicians and theoretical physicists have made significant progress in formulating analytical tools to describe fluid dynamics through variational methods. These tools are much loved by theoretists, and rightly so, because they are quite powerful and beautiful theoretical tools. Chemists, physicists and engineers, however, are limited in their ability to use these tools, because presently they are applicable only to "perfect fluids" (i. e. those fluids without viscosity, heat transfer, diffusion and chemical reactions). To be useful, a model must take into account important transport and rate phenomena, which are inherent to real fluid behavior and which cannot be ignored. This monograph serves to provide the beginnings of a means by which to extend the mathematical analyses to include the basic effects of thermo-hydrodynamics. In large part a research report, this study uses variational calculus as a basic theoretical tool, without undo compromise to the integrity of the mathematical analyses, while emphasizing the conservation laws of real fluids in the context of underlying thermodynamics --reversible or irreversible. The approach of this monograph is a new generalizing approach, based on Nother's theorem and variational calculus, which leads to the energy-momentum tensor and the related conservation or balance equations in fluids.
Complexity and Complex Chemo-Electric Systems
Title | Complexity and Complex Chemo-Electric Systems PDF eBook |
Author | Stanislaw Sieniutycz |
Publisher | Elsevier |
Pages | 324 |
Release | 2021-02-09 |
Genre | Technology & Engineering |
ISBN | 0128236361 |
Complexity and Complex Chemo-Electric Systems presents an analysis and synthesis of chemo-electric systems, providing insights on transports in electrolytes, electrode reactions, electrocatalysis, electrochemical membranes, and various aspects of heterogeneous systems and electrochemical engineering. The book describes the properties of complexity and complex chemo-electric systems as the consequence of formulations, definitions, tools, solutions and results that are often consistent with the best performance of the system. The book handles cybernetics, systems theory and advanced contemporary techniques such as optimal control, neural networks and stochastic optimizations (adaptive random search, genetic algorithms, and simulated annealing). A brief part of the book is devoted to issues such as various definitions of complexity, hierarchical structures, self-organization examples, special references, and historical issues. This resource complements Sieniutycz' recently published book, Complexity and Complex Thermodynamic Systems, with its inclusion of complex chemo-electric systems in which complexities, emergent properties and self-organization play essential roles. - Covers the theory and applications of complex chemo-electric systems through modeling, analysis, synthesis and optimization - Provides a clear presentation of the applications of transport theory to electrolyte solutions, heterogeneous electrochemical systems, membranes, electro-kinetic phenomena and interface processes - Includes numerous explanatory graphs and drawings that illustrate the properties and complexities in complex chemo-electric systems - Written by an experienced expert in the field of advanced methods in thermodynamics and related aspects of macroscopic physics
Mesoscopic Theories of Heat Transport in Nanosystems
Title | Mesoscopic Theories of Heat Transport in Nanosystems PDF eBook |
Author | Antonio Sellitto |
Publisher | Springer |
Pages | 188 |
Release | 2016-02-03 |
Genre | Science |
ISBN | 3319272063 |
This book presents generalized heat-conduction laws which, from a mesoscopic perspective, are relevant to new applications (especially in nanoscale heat transfer, nanoscale thermoelectric phenomena, and in diffusive-to-ballistic regime) and at the same time keep up with the pace of current microscopic research. The equations presented in the book are compatible with generalized formulations of nonequilibrium thermodynamics, going beyond the local-equilibrium. The book includes six main chapters, together with a preface and a final section devoted to the future perspectives, as well as an extensive bibliography.
Energy Optimization in Process Systems and Fuel Cells
Title | Energy Optimization in Process Systems and Fuel Cells PDF eBook |
Author | Stanislaw Sieniutycz |
Publisher | Newnes |
Pages | 821 |
Release | 2013-02-14 |
Genre | Technology & Engineering |
ISBN | 0080982271 |
Energy Optimization in Process Systems and Fuel Cells, Second Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utilities common in the chemical industry. This second edition contains substantial revisions, with particular focus on the rapid progress in the field of fuel cells, related energy theory, and recent advances in the optimization and control of fuel cell systems. - New information on fuel cell theory, combined with the theory of flow energy systems, broadens the scope and usefulness of the book - Discusses engineering applications including power generation, resource upgrading, radiation conversion, and chemical transformation in static and dynamic systems - Contains practical applications of optimization methods that help solve the problems of power maximization and optimal use of energy and resources in chemical, mechanical, and environmental engineering
Energy Optimization in Process Systems
Title | Energy Optimization in Process Systems PDF eBook |
Author | Stanislaw Sieniutycz |
Publisher | Elsevier |
Pages | 771 |
Release | 2009-05-06 |
Genre | Technology & Engineering |
ISBN | 008091442X |
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive coverage of dynamic optimization of energy conversion systems and separation units is provided along with suitable computational algorithms for deterministic and stochastic optimization approaches based on: nonlinear programming, dynamic programming, variational calculus, Hamilton-Jacobi-Bellman theory, Pontryagin's maximum principles, and special methods of process integration. Integration of heat energy and process water within a total site is shown to be a significant factor reducing production costs, in particular costs of utilities for the chemical industry. This integration involves systematic design and optimization of heat exchangers and water networks (HEN and WN). After presenting basic, insight-based Pinch Technology, systematic, optimization-based sequential and simultaneous approaches to design HEN and WN are described. Special consideration is given to the HEN design problem targeting stage, in view of its importance at various levels of system design. Selected, advanced methods for HEN synthesis and retrofit are presented. For WN design a novel approach based on stochastic optimization is described that accounts for both grassroot and revamp design scenarios. - Presents a unique synthesis of energy optimization and process integration that applies scientific information from thermodynamics, kinetics, and systems theory - Discusses engineering applications including power generation, resource upgrading, radiation conversion and chemical transformation, in static and dynamic systems - Clarifies how to identify thermal and chemical constraints and incorporate them into optimization models and solutions
Heat Conduction
Title | Heat Conduction PDF eBook |
Author | Vyacheslav Vikhrenko |
Publisher | BoD – Books on Demand |
Pages | 366 |
Release | 2011-11-30 |
Genre | Technology & Engineering |
ISBN | 9533074043 |
The content of this book covers several up-to-date approaches in the heat conduction theory such as inverse heat conduction problems, non-linear and non-classic heat conduction equations, coupled thermal and electromagnetic or mechanical effects and numerical methods for solving heat conduction equations as well. The book is comprised of 14 chapters divided into four sections. In the first section inverse heat conduction problems are discuss. The first two chapters of the second section are devoted to construction of analytical solutions of nonlinear heat conduction problems. In the last two chapters of this section wavelike solutions are attained.The third section is devoted to combined effects of heat conduction and electromagnetic interactions in plasmas or in pyroelectric material elastic deformations and hydrodynamics. Two chapters in the last section are dedicated to numerical methods for solving heat conduction problems.