Connections Between Algebra, Combinatorics, and Geometry
Title | Connections Between Algebra, Combinatorics, and Geometry PDF eBook |
Author | Susan M. Cooper |
Publisher | Springer |
Pages | 328 |
Release | 2014-05-16 |
Genre | Mathematics |
ISBN | 1493906267 |
Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.
Combinatorial Convexity and Algebraic Geometry
Title | Combinatorial Convexity and Algebraic Geometry PDF eBook |
Author | Günter Ewald |
Publisher | Springer Science & Business Media |
Pages | 378 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461240441 |
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.
Combinatorial Structures in Algebra and Geometry
Title | Combinatorial Structures in Algebra and Geometry PDF eBook |
Author | Dumitru I. Stamate |
Publisher | Springer Nature |
Pages | 185 |
Release | 2020-09-01 |
Genre | Mathematics |
ISBN | 3030521117 |
This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).
Difference Sets
Title | Difference Sets PDF eBook |
Author | Emily H. Moore |
Publisher | American Mathematical Soc. |
Pages | 315 |
Release | 2013-06-13 |
Genre | Mathematics |
ISBN | 0821891766 |
Difference sets belong both to group theory and to combinatorics. Studying them requires tools from geometry, number theory, and representation theory. This book lays a foundation for these topics, including a primer on representations and characters of f
Algebraic Combinatorics and Coinvariant Spaces
Title | Algebraic Combinatorics and Coinvariant Spaces PDF eBook |
Author | Francois Bergeron |
Publisher | CRC Press |
Pages | 227 |
Release | 2009-07-06 |
Genre | Mathematics |
ISBN | 1439865078 |
Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Combinatorial Algebraic Geometry
Title | Combinatorial Algebraic Geometry PDF eBook |
Author | Gregory G. Smith |
Publisher | Springer |
Pages | 391 |
Release | 2017-11-17 |
Genre | Mathematics |
ISBN | 1493974866 |
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
Combinatorics and Commutative Algebra
Title | Combinatorics and Commutative Algebra PDF eBook |
Author | Richard P. Stanley |
Publisher | Springer Science & Business Media |
Pages | 173 |
Release | 2004-10-15 |
Genre | Mathematics |
ISBN | 0817643699 |
* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics