Conformal Field Theories and Tensor Categories

Conformal Field Theories and Tensor Categories
Title Conformal Field Theories and Tensor Categories PDF eBook
Author Chengming Bai
Publisher Springer Science & Business Media
Pages 285
Release 2013-10-30
Genre Mathematics
ISBN 3642393837

Download Conformal Field Theories and Tensor Categories Book in PDF, Epub and Kindle

The present volume is a collection of seven papers that are either based on the talks presented at the workshop "Conformal field theories and tensor categories" held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

Lectures on Tensor Categories and Modular Functors

Lectures on Tensor Categories and Modular Functors
Title Lectures on Tensor Categories and Modular Functors PDF eBook
Author Bojko Bakalov
Publisher American Mathematical Soc.
Pages 232
Release 2001
Genre Mathematics
ISBN 0821826867

Download Lectures on Tensor Categories and Modular Functors Book in PDF, Epub and Kindle

This book gives an exposition of the relations among the following three topics: monoidal tensor categories (such as a category of representations of a quantum group), 3-dimensional topological quantum field theory, and 2-dimensional modular functors (which naturally arise in 2-dimensional conformal field theory). The following examples are discussed in detail: the category of representations of a quantum group at a root of unity and the Wess-Zumino-Witten modular functor. The idea that these topics are related first appeared in the physics literature in the study of quantum field theory. Pioneering works of Witten and Moore-Seiberg triggered an avalanche of papers, both physical and mathematical, exploring various aspects of these relations. Upon preparing to lecture on the topic at MIT, however, the authors discovered that the existing literature was difficult and that there were gaps to fill. The text is wholly expository and finely succinct. It gathers results, fills existing gaps, and simplifies some proofs. The book makes an important addition to the existing literature on the topic. It would be suitable as a course text at the advanced-graduate level.

Tensor Categories

Tensor Categories
Title Tensor Categories PDF eBook
Author Pavel Etingof
Publisher American Mathematical Soc.
Pages 362
Release 2016-08-05
Genre Mathematics
ISBN 1470434415

Download Tensor Categories Book in PDF, Epub and Kindle

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

A Mathematical Introduction to Conformal Field Theory

A Mathematical Introduction to Conformal Field Theory
Title A Mathematical Introduction to Conformal Field Theory PDF eBook
Author Martin Schottenloher
Publisher Springer Science & Business Media
Pages 153
Release 2008-09-15
Genre Science
ISBN 3540706909

Download A Mathematical Introduction to Conformal Field Theory Book in PDF, Epub and Kindle

Part I gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. The conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. Part II surveys more advanced topics of conformal field theory such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface.

Renormalization and Effective Field Theory

Renormalization and Effective Field Theory
Title Renormalization and Effective Field Theory PDF eBook
Author Kevin Costello
Publisher American Mathematical Soc.
Pages 264
Release 2011
Genre Mathematics
ISBN 0821852884

Download Renormalization and Effective Field Theory Book in PDF, Epub and Kindle

Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin-Vilkovisky formalism.

Dualizable Tensor Categories

Dualizable Tensor Categories
Title Dualizable Tensor Categories PDF eBook
Author Christopher L. Douglas
Publisher American Mathematical Soc.
Pages 88
Release 2021-06-18
Genre Education
ISBN 1470443619

Download Dualizable Tensor Categories Book in PDF, Epub and Kindle

We investigate the relationship between the algebra of tensor categories and the topology of framed 3-manifolds. On the one hand, tensor categories with cer-tain algebraic properties determine topological invariants. We prove that fusion categories of nonzero global dimension are 3-dualizable, and therefore provide 3-dimensional 3-framed local field theories. We also show that all finite tensor cat-egories are 2-dualizable, and yield categorified 2-dimensional 3-framed local field theories. On the other hand, topological properties of 3-framed manifolds deter-mine algebraic equations among functors of tensor categories. We show that the 1-dimensional loop bordism, which exhibits a single full rotation, acts as the double dual autofunctor of a tensor category. We prove that the 2-dimensional belt-trick bordism, which unravels a double rotation, operates on any finite tensor category, and therefore supplies a trivialization of the quadruple dual. This approach pro-duces a quadruple-dual theorem for suitably dualizable objects in any symmetric monoidal 3-category. There is furthermore a correspondence between algebraic structures on tensor categories and homotopy fixed point structures, which in turn provide structured field theories; we describe the expected connection between piv-otal tensor categories and combed fixed point structures, and between spherical tensor categories and oriented fixed point structures.

String-Net Construction of RCFT Correlators

String-Net Construction of RCFT Correlators
Title String-Net Construction of RCFT Correlators PDF eBook
Author Jürgen Fuchs
Publisher Springer Nature
Pages 129
Release 2023-01-01
Genre Science
ISBN 3031146824

Download String-Net Construction of RCFT Correlators Book in PDF, Epub and Kindle

This book studies using string-net models to accomplish a direct, purely two-dimensional, approach to correlators of two-dimensional rational conformal field theories. The authors obtain concise geometric expressions for the objects describing bulk and boundary fields in terms of idempotents in the cylinder category of the underlying modular fusion category, comprising more general classes of fields than is standard in the literature. Combining these idempotents with Frobenius graphs on the world sheet yields string nets that form a consistent system of correlators, i.e. a system of invariants under appropriate mapping class groups that are compatible with factorization. The authors extract operator products of field objects from specific correlators; the resulting operator products are natural algebraic expressions that make sense beyond semisimplicity. They also derive an Eckmann-Hilton relation internal to a braided category, thereby demonstrating the utility of string nets for understanding algebra in braided tensor categories. Finally, they introduce the notion of a universal correlator. This systematizes the treatment of situations in which different world sheets have the same correlator and allows for the definition of a more comprehensive mapping class group.