Conducting Polymer Nanocomposites for Supercapacitors

Conducting Polymer Nanocomposites for Supercapacitors
Title Conducting Polymer Nanocomposites for Supercapacitors PDF eBook
Author Subhash Kondawar
Publisher Smithers Rapra
Pages 184
Release 2015-09-11
Genre Science
ISBN 1910242403

Download Conducting Polymer Nanocomposites for Supercapacitors Book in PDF, Epub and Kindle

Supercapacitors have drawn intensive attention owing to their virtues of high power density, long cycle life, short charging time and safe operation for promising applications to resolve problems of limited global energy supply and environmental problems. Supercapacitors are designed to bridge the gap between batteries and capacitors, to form fast charging energy-storage devices of intermediate specific energy. The supercapacitor is an important device in the energy storage and conversion systems, and is used in different applications such as in electric vehicles, uninterruptible power supplies, memory protection of computer electronics and cellular devices.This book serves as a guide in understanding the basics of conducting polymer technology, nanostructurisation of conducting polymers and their composites emerging as a new field of research and development, directed to the creation of new smart materials, especially for supercapacitors.The concepts of supercapacitors are well explained in simple and concise form to avoid the confusion of students and academic professionals. The book has chemical engineering orientation and therefore, professionals from the polymer science field may find this book most suitable for their advanced and applied field of research. It will provide them an opportunity to learn about conducting polymers and nanocomposites, and their production and processing technology for supercapacitors. Although the attention is mainly focused on preparation of conducting polymer based binary and ternary nanocomposites and their electrochemical performances for supercapacitor application, this book will be a valuable reference for scientists, engineers, students and general readers who are interested in the investigation and exploitation of the fascinating new class of conducting polymer nanocomposites.

Conducting Polymer Hybrids

Conducting Polymer Hybrids
Title Conducting Polymer Hybrids PDF eBook
Author Vijay Kumar
Publisher Springer
Pages 338
Release 2016-11-02
Genre Technology & Engineering
ISBN 3319464582

Download Conducting Polymer Hybrids Book in PDF, Epub and Kindle

This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given. “Conducting Polymer Hybrids” is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.

Conducting Polymer-Based Nanocomposites

Conducting Polymer-Based Nanocomposites
Title Conducting Polymer-Based Nanocomposites PDF eBook
Author Ayesha Kausar
Publisher Elsevier
Pages 306
Release 2021-04-28
Genre Science
ISBN 0128224630

Download Conducting Polymer-Based Nanocomposites Book in PDF, Epub and Kindle

Conducting Polymer-Based Nanocomposites: Fundamentals and Applications delivers an up-to-date overview on cutting-edge advancements in the field of nanocomposites derived from conjugated polymeric matrices. Design of conducting polymers and resultant nanocomposites has instigated significant addition in the field of modern nanoscience and technology. Recently, conducting polymer-based nanocomposites have attracted considerable academic and industrial research interest. The conductivity and physical properties of conjugated polymers have shown dramatic improvement with nanofiller addition. Appropriate fabrication strategies and the choice of a nanoreinforcement, along with a conducting matrix, may lead to enhanced physicochemical features and material performance. Substantial electrical conductivity, optical features, thermal stability, thermal conductivity, mechanical strength, and other physical properties of the conducting polymer-based nanocomposites have led to high-performance materials and high-tech devices and applications. This book begins with a widespread impression of state-of-the-art knowledge in indispensable features and processing of conducting polymer-based nanocomposites. It then discusses essential categories of conducting polymer-based nanocomposites such as polyaniline, polypyrrole, polythiophene, and derived nanomaterials. Subsequent sections of this book are related to the potential impact of conducting polymer-based nanocomposites in various technical fields. Significant application areas have been identified for anti-corrosion, EMI shielding, sensing, and energy device relevance. Finally, the book covers predictable challenges and future opportunities in the field of conjugated nanocomposites. Integrates the fundamentals of conducting polymers and a range of multifunctional applications Describes categories of essential conducting polymer-based nanocomposites for polyaniline, polypyrrole, polythiophene, and derivative materials Assimilates the significance of multifunctional nanostructured materials of nanocomposite nanofibers Portrays current and future demanding technological applications of conjugated polymer-based nanocomposites, including anti-corrosion coatings, EMI shielding, sensors, and energy production and storage devices

Handbook of Nanocomposite Supercapacitor Materials I

Handbook of Nanocomposite Supercapacitor Materials I
Title Handbook of Nanocomposite Supercapacitor Materials I PDF eBook
Author Kamal K. Kar
Publisher Springer Nature
Pages 378
Release 2020-04-16
Genre Technology & Engineering
ISBN 303043009X

Download Handbook of Nanocomposite Supercapacitor Materials I Book in PDF, Epub and Kindle

This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.

Nanocomposites for Electrochemical Capacitors

Nanocomposites for Electrochemical Capacitors
Title Nanocomposites for Electrochemical Capacitors PDF eBook
Author Inamuddin
Publisher Materials Research Forum LLC
Pages 215
Release 2018-01-15
Genre Technology & Engineering
ISBN 1945291532

Download Nanocomposites for Electrochemical Capacitors Book in PDF, Epub and Kindle

Electrochemical capacitors or supercapacitors offer a number of advantages over batteries; they are more safe and reliable, charge quicker, have an indefinite lifespan, exhibit a high power density and a wide range of working temperature. Supercapacitors demonstrate an extraordinary potential in both consumer electronics and large-sized energy storage applications, e.g. in communications, transportation, aviation, and power industries. The book explores recent developments in the area of composite applications for supercapacitor electrodes based von conducting polymers, graphene, biomass, or carbonaceous quantum dots. Synthesis strategies of composite materials and electrode preparation methods are discussed in detail. Electrochemical Capacitors, Supercapacitors, Energy Storage, Supercapacitor Electrodes, Conducting Polymer Composites, Graphene-based Composites, Biomass-based Capacitors, Carbonaceous Quantum Dot Composites, Sol-Gel Synthesis, Sonochemical Synthesis, Polyaniline-Zirconia Nanofibers

Polymer Nanocomposites for Advanced Engineering and Military Applications

Polymer Nanocomposites for Advanced Engineering and Military Applications
Title Polymer Nanocomposites for Advanced Engineering and Military Applications PDF eBook
Author Ramdani, Noureddine
Publisher IGI Global
Pages 453
Release 2019-04-01
Genre Technology & Engineering
ISBN 1522578390

Download Polymer Nanocomposites for Advanced Engineering and Military Applications Book in PDF, Epub and Kindle

The field of polymer nanocomposites has become essential for engineering and military industries over the last few decades as it applies to computing, sensors, biomedical microelectronics, hard coating, and many other domains. Due to their outstanding mechanical and thermal features, polymer nanocomposite materials have recently been developed and now have a wide range of applications. Polymer Nanocomposites for Advanced Engineering and Military Applications provides emerging research on recent advances in the fabrication methods, properties, and applications of various nano-fillers including surface-modification methods and chemical functionalization. Featuring coverage on a broad range of topics such as barrier properties, biomedical microelectronics, and matrix processing, this book is ideally designed for engineers, industrialists, chemists, government officials, military professionals, practitioners, academicians, researchers, and students.

Conducting Polymers-Based Energy Storage Materials

Conducting Polymers-Based Energy Storage Materials
Title Conducting Polymers-Based Energy Storage Materials PDF eBook
Author Dr Inamuddin
Publisher CRC Press
Pages 353
Release 2019-12-10
Genre Science
ISBN 0429510888

Download Conducting Polymers-Based Energy Storage Materials Book in PDF, Epub and Kindle

Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge–discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.