Conditionals, Information, and Inference
Title | Conditionals, Information, and Inference PDF eBook |
Author | Gabriele Kern-Isberner |
Publisher | Springer Science & Business Media |
Pages | 230 |
Release | 2005-05-18 |
Genre | Computers |
ISBN | 3540253327 |
This book constitutes the thoroughly refereed postproceedings of the International Workshop on Conditionals, Information, and Inference, WCII 2002, held in Hagen, Germany in May 2002. The 9 revised full papers presented together with 3 invited papers by leading researchers in the area were carefully selected during iterated rounds of reviewing and improvement. The papers address all current issues of research on conditionals, ranging from foundational, theoretical, and methodological aspects to applications in various contexts of knowledge representation.
Information Theory, Inference and Learning Algorithms
Title | Information Theory, Inference and Learning Algorithms PDF eBook |
Author | David J. C. MacKay |
Publisher | Cambridge University Press |
Pages | 694 |
Release | 2003-09-25 |
Genre | Computers |
ISBN | 9780521642989 |
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
An Introduction to Causal Inference
Title | An Introduction to Causal Inference PDF eBook |
Author | Judea Pearl |
Publisher | Createspace Independent Publishing Platform |
Pages | 0 |
Release | 2015 |
Genre | Causation |
ISBN | 9781507894293 |
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.
Information, Inference and Decision
Title | Information, Inference and Decision PDF eBook |
Author | G. Menges |
Publisher | Springer Science & Business Media |
Pages | 196 |
Release | 2012-12-06 |
Genre | Social Science |
ISBN | 9401021597 |
Under the title 'Information, Inference and Decision' this volume in the Theory and Decision Library presents some papers on issues from the borderland of statistical inference philosophy and epistemology, written by statisticians and decision theorists who belonged or are allied to the former Saarbriicken school of statistical decision theory. In the first part I make an attempt to outline an objective theory of inductive behaviour, on the basis of R. A. Fisher's statistical inference philosophy, on the one hand, and R. Carnap's inductive logic, on the other. A special problem arising in the context of the new theory, viz., the problem of vagueness of concepts (in particular in the social sciences) is treated separately by H. Skala and myself. B. Leiner has contributed some biographical and bibliographical notes on the objective theory of inductive behaviour. Part II is concerned with inference philosophy. D. A. S. Fraser, the founder of structural inference theory, characterizes and compares some inference philosophies, and discusses his own and the arguments of the critics of his structural theory. In my opinion, Fraser's structural infer ence theory is suited to complete Fisher's inference philosophy in some essential points, if not to replace it. An interesting task for future re search work is to establish the connection between Fraser's theory and Carnap's ideas in the framework of an objective theory of inductive behaviour.
Cognition and Conditionals
Title | Cognition and Conditionals PDF eBook |
Author | Mike Oaksford |
Publisher | Oxford University Press, USA |
Pages | 420 |
Release | 2010 |
Genre | Language Arts & Disciplines |
ISBN | 0199233292 |
The conditional, if...then, is probably the most important term in natural language and forms the core of systems of logic and mental representation. Cognition and Conditionals is the first volume for over 20 years that brings together recent developments in the cognitive science and psychology of conditional reasoning.
Statistical Inference as Severe Testing
Title | Statistical Inference as Severe Testing PDF eBook |
Author | Deborah G. Mayo |
Publisher | Cambridge University Press |
Pages | 503 |
Release | 2018-09-20 |
Genre | Mathematics |
ISBN | 1108563309 |
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
The Prevention and Treatment of Missing Data in Clinical Trials
Title | The Prevention and Treatment of Missing Data in Clinical Trials PDF eBook |
Author | National Research Council |
Publisher | National Academies Press |
Pages | 163 |
Release | 2010-12-21 |
Genre | Medical |
ISBN | 030918651X |
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.