Computing in Euclidean Geometry

Computing in Euclidean Geometry
Title Computing in Euclidean Geometry PDF eBook
Author Ding-Zhu Du
Publisher World Scientific
Pages 520
Release 1995
Genre Mathematics
ISBN 9789810218768

Download Computing in Euclidean Geometry Book in PDF, Epub and Kindle

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.

Introduction to Geometric Computing

Introduction to Geometric Computing
Title Introduction to Geometric Computing PDF eBook
Author Sherif Ghali
Publisher Springer Science & Business Media
Pages 338
Release 2008-07-05
Genre Computers
ISBN 1848001150

Download Introduction to Geometric Computing Book in PDF, Epub and Kindle

Computing is quickly making much of geometry intriguing not only for philosophers and mathematicians, but also for scientists and engineers. What is the core set of topics that a practitioner needs to study before embarking on the design and implementation of a geometric system in a specialized discipline? This book attempts to find the answer. Every programmer tackling a geometric computing problem encounters design decisions that need to be solved. This book reviews the geometric theory then applies it in an attempt to find that elusive "right" design.

Computing in Euclidean Geometry

Computing in Euclidean Geometry
Title Computing in Euclidean Geometry PDF eBook
Author Dingzhu Du
Publisher World Scientific
Pages 414
Release 1992
Genre Mathematics
ISBN 9789810209667

Download Computing in Euclidean Geometry Book in PDF, Epub and Kindle

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. The topics covered are: a history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra; triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and steiner trees. Each chapter is written by a leading expert in the field and together they provide a clear and authoritative picture of what computational Euclidean geometry is and the direction in which research is going.

Geometric Algebra for Computer Science

Geometric Algebra for Computer Science
Title Geometric Algebra for Computer Science PDF eBook
Author Leo Dorst
Publisher Elsevier
Pages 664
Release 2010-07-26
Genre Juvenile Nonfiction
ISBN 0080553109

Download Geometric Algebra for Computer Science Book in PDF, Epub and Kindle

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Computing In Euclidean Geometry (2nd Edition)

Computing In Euclidean Geometry (2nd Edition)
Title Computing In Euclidean Geometry (2nd Edition) PDF eBook
Author Ding-zhu Du
Publisher World Scientific
Pages 516
Release 1995-01-25
Genre Computers
ISBN 9814501638

Download Computing In Euclidean Geometry (2nd Edition) Book in PDF, Epub and Kindle

This book is a collection of surveys and exploratory articles about recent developments in the field of computational Euclidean geometry. Topics covered include the history of Euclidean geometry, Voronoi diagrams, randomized geometric algorithms, computational algebra, triangulations, machine proofs, topological designs, finite-element mesh, computer-aided geometric designs and Steiner trees. This second edition contains three new surveys covering geometric constraint solving, computational geometry and the exact computation paradigm.

Computational Geometry

Computational Geometry
Title Computational Geometry PDF eBook
Author Franco P. Preparata
Publisher Springer Science & Business Media
Pages 413
Release 2012-12-06
Genre Mathematics
ISBN 1461210984

Download Computational Geometry Book in PDF, Epub and Kindle

From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Geometric Methods and Applications

Geometric Methods and Applications
Title Geometric Methods and Applications PDF eBook
Author Jean Gallier
Publisher Springer Science & Business Media
Pages 584
Release 2012-12-06
Genre Mathematics
ISBN 1461301378

Download Geometric Methods and Applications Book in PDF, Epub and Kindle

As an introduction to fundamental geometric concepts and tools needed for solving problems of a geometric nature using a computer, this book fills the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, or robotics that do not cover the underlying geometric concepts in detail. Gallier offers an introduction to affine, projective, computational, and Euclidean geometry, basics of differential geometry and Lie groups, and explores many of the practical applications of geometry. Some of these include computer vision, efficient communication, error correcting codes, cryptography, motion interpolation, and robot kinematics. This comprehensive text covers most of the geometric background needed for conducting research in computer graphics, geometric modeling, computer vision, and robotics and as such will be of interest to a wide audience including computer scientists, mathematicians, and engineers.