Computer Vision on AWS
Title | Computer Vision on AWS PDF eBook |
Author | Lauren Mullennex |
Publisher | Packt Publishing Ltd |
Pages | 324 |
Release | 2023-03-31 |
Genre | Computers |
ISBN | 1803248203 |
Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
Computer Vision on AWS
Title | Computer Vision on AWS PDF eBook |
Author | Lauren Mullennex |
Publisher | Packt Publishing Ltd |
Pages | 324 |
Release | 2023-03-31 |
Genre | Computers |
ISBN | 1803248203 |
Develop scalable computer vision solutions for real-world business problems and discover scaling, cost reduction, security, and bias mitigation best practices with AWS AI/ML services Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn how to quickly deploy and automate end-to-end CV pipelines on AWS Implement design principles to mitigate bias and scale production of CV workloads Work with code examples to master CV concepts using AWS AI/ML services Book Description Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You'll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that'll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services. What you will learn Apply CV across industries, including e-commerce, logistics, and media Build custom image classifiers with Amazon Rekognition Custom Labels Create automated end-to-end CV workflows on AWS Detect product defects on edge devices using Amazon Lookout for Vision Build, deploy, and monitor CV models using Amazon SageMaker Discover best practices for designing and evaluating CV workloads Develop an AI governance strategy across the entire machine learning life cycle Who this book is for If you are a machine learning engineer or data scientist looking to discover best practices and learn how to build comprehensive CV solutions on AWS, this book is for you. Knowledge of AWS basics is required to grasp the concepts covered in this book more effectively. A solid understanding of machine learning concepts and the Python programming language will also be beneficial.
Data Science on AWS
Title | Data Science on AWS PDF eBook |
Author | Chris Fregly |
Publisher | "O'Reilly Media, Inc." |
Pages | 524 |
Release | 2021-04-07 |
Genre | Computers |
ISBN | 1492079340 |
With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more
A Beginners Guide to Amazon Web Services
Title | A Beginners Guide to Amazon Web Services PDF eBook |
Author | Parul Dubey |
Publisher | CRC Press |
Pages | 193 |
Release | 2024-01-18 |
Genre | Computers |
ISBN | 1003824617 |
Amazon Web Services (AWS) provides on-demand cloud computing platforms and application programming interfaces (APIs) to individuals, companies, and govern- ments, along with distributed computing processing capacity and software tools via AWS server farms. This text presents a hands-on approach for beginners to get started with Amazon Web Services (AWS) in a simple way. Key Features It discusses topics such as Amazon Elastic Compute Cloud, Elastic Load Balancing, Auto Scaling Groups, and Amazon Simple Storage Service. It showcases Amazon Web Services’ identity, access management resources, and attribute-based access control. It covers serverless computing services, Virtual Private Cloud, Amazon Aurora, and Amazon Comprehend. It explains Amazon Web Services Free Tier, Amazon Web Services Marketplace, and Amazon Elastic Container Service. It includes security in Amazon Web Services, the shared responsibilitymodel, and high-performance computing on Amazon Web Services. The text is primarily written for graduate students, professionals, and academic researchers working in the fields of computer science, engineering, and information technology. Parul Dubey is currently working as an Assistant professor in the Department of Artificial Intelligence at G H Raisoni College of Engineering, Nagpur, India. She has filed for 15 Indian patents. She is responsible for about 10 publications in conference proceedings, Scopus, and journals. She has contributed book chapters in an edited book published by CRC Press and other reputed publishers. She is also an AWS Certified Cloud Practitioner. Rohit Raja is working as an associate professor and head in the Department of Information Technology at Guru Ghasidas Vishwavidyalaya, Bilaspur, India. His research interests include facial recognition, signal processing, networking, and data mining. He has pub- lished 100 research papers in various international and national journals (including publications by the IEEE, Springer, etc.) and proceedings of reputed international and national conferences (again including publications by Springer and the IEEE).
Machine Learning in the AWS Cloud
Title | Machine Learning in the AWS Cloud PDF eBook |
Author | Abhishek Mishra |
Publisher | John Wiley & Sons |
Pages | 528 |
Release | 2019-09-11 |
Genre | Computers |
ISBN | 1119556716 |
Put the power of AWS Cloud machine learning services to work in your business and commercial applications! Machine Learning in the AWS Cloud introduces readers to the machine learning (ML) capabilities of the Amazon Web Services ecosystem and provides practical examples to solve real-world regression and classification problems. While readers do not need prior ML experience, they are expected to have some knowledge of Python and a basic knowledge of Amazon Web Services. Part One introduces readers to fundamental machine learning concepts. You will learn about the types of ML systems, how they are used, and challenges you may face with ML solutions. Part Two focuses on machine learning services provided by Amazon Web Services. You’ll be introduced to the basics of cloud computing and AWS offerings in the cloud-based machine learning space. Then you’ll learn to use Amazon Machine Learning to solve a simpler class of machine learning problems, and Amazon SageMaker to solve more complex problems. • Learn techniques that allow you to preprocess data, basic feature engineering, visualizing data, and model building • Discover common neural network frameworks with Amazon SageMaker • Solve computer vision problems with Amazon Rekognition • Benefit from illustrations, source code examples, and sidebars in each chapter The book appeals to both Python developers and technical/solution architects. Developers will find concrete examples that show them how to perform common ML tasks with Python on AWS. Technical/solution architects will find useful information on the machine learning capabilities of the AWS ecosystem.
Cloud Native AI and Machine Learning on AWS
Title | Cloud Native AI and Machine Learning on AWS PDF eBook |
Author | Premkumar Rangarajan |
Publisher | BPB Publications |
Pages | 366 |
Release | 2023-02-14 |
Genre | Computers |
ISBN | 9355513267 |
Bring elasticity and innovation to Machine Learning and AI operations KEY FEATURES ● Coverage includes a wide range of AWS AI and ML services to help you speedily get fully operational with ML. ● Packed with real-world examples, practical guides, and expert data science methods for improving AI/ML education on AWS. ● Includes ready-made, purpose-built models as AI services and proven methods to adopt MLOps techniques. DESCRIPTION Using machine learning and artificial intelligence (AI) in existing business processes has been successful. Even AWS's ML and AI services make it simple and economical to conduct machine learning experiments. This book will show readers how to use the complete set of AI and ML services available on AWS to streamline the management of their whole AI operation and speed up their innovation. In this book, you'll learn how to build data lakes, build and train machine learning models, automate MLOps, ensure maximum data reusability and reproducibility, and much more. The applications presented in the book show how to make the most of several different AWS offerings, including Amazon Comprehend, Amazon Rekognition, Amazon Lookout, and AutoML. This book teaches you to manage massive data lakes, train artificial intelligence models, release these applications into production, and track their progress in real-time. You will learn how to use the pre-trained models for various tasks, including picture recognition, automated data extraction, image/video detection, and anomaly detection. Every step of your Machine Learning and AI project's development process is optimised throughout the book by utilising Amazon's pre-made, purpose-built AI services. WHAT YOU WILL LEARN ● Learn how to build, deploy, and manage large-scale AI and ML applications on AWS. ● Get your hands dirty with AWS AI services like SageMaker, Comprehend, Rekognition, Lookout, and AutoML. ● Master data transformation, feature engineering, and model training with Amazon SageMaker modules. ● Use neural networks, distributed learning, and deep learning algorithms to improve ML models. ● Use AutoML, SageMaker Canvas, and Autopilot for Model Deployment and Evaluation. ● Acquire expertise with Amazon SageMaker Studio, Jupyter Server, and ML frameworks such as TensorFlow and MXNet. WHO THIS BOOK IS FOR Data Engineers, Data Scientists, AWS and Cloud Professionals who are comfortable with machine learning and the fundamentals of Python will find this book powerful. Familiarity with AWS would be helpful but is not required. TABLE OF CONTENTS 1. Introducing the ML Workflow 2. Hydrating the Data Lake 3. Predicting the Future With Features 4. Orchestrating the Data Continuum 5. Casting a Deeper Net (Algorithms and Neural Networks) 6. Iteration Makes Intelligence (Model Training and Tuning) 7. Let George Take Over (AutoML in Action) 8. Blue or Green (Model Deployment Strategies) 9. Wisdom at Scale with Elastic Inference 10. Adding Intelligence with Sensory Cognition 11. AI for Industrial Automation 12. Operationalized Model Assembly (MLOps and Best Practices)
Modern Computer Vision with PyTorch
Title | Modern Computer Vision with PyTorch PDF eBook |
Author | V Kishore Ayyadevara |
Publisher | Packt Publishing Ltd |
Pages | 747 |
Release | 2024-06-10 |
Genre | Computers |
ISBN | 1803240938 |
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.