Computer Solution of Linear Algebraic Systems
Title | Computer Solution of Linear Algebraic Systems PDF eBook |
Author | George Elmer Forsythe |
Publisher | |
Pages | 172 |
Release | 1967 |
Genre | Electronic data processing |
ISBN |
Solving Linear Systems on Vector and Shared Memory Computers
Title | Solving Linear Systems on Vector and Shared Memory Computers PDF eBook |
Author | J. J. Dongarra |
Publisher | Society for Industrial and Applied Mathematics (SIAM) |
Pages | 274 |
Release | 1991 |
Genre | Computers |
ISBN |
Mathematics of Computing -- Parallelism.
Parallel Complexity Of Linear System Solution
Title | Parallel Complexity Of Linear System Solution PDF eBook |
Author | Bruno Codenotti |
Publisher | World Scientific |
Pages | 232 |
Release | 1991-04-30 |
Genre | Computers |
ISBN | 9814506478 |
This book presents the most important parallel algorithms for the solution of linear systems. Despite the evolution and significance of the field of parallel solution of linear systems, no book is completely dedicated to the subject. People interested in the themes covered by this book belong to two different groups: numerical linear algebra and theoretical computer science, and this is the first effort to produce a useful tool for both. The book is organized as follows: after introducing the general features of parallel algorithms and the most important models of parallel computation, the authors analyze the complexity of solving linear systems in the circuit, PRAM, distributed, and VLSI models. The approach covers both the general case (i.e. dense linear systems without structure) and many important special cases (i.e. banded, sparse, Toeplitz, circulant linear systems).
Krylov Solvers for Linear Algebraic Systems
Title | Krylov Solvers for Linear Algebraic Systems PDF eBook |
Author | Charles George Broyden |
Publisher | Elsevier |
Pages | 343 |
Release | 2004-09-08 |
Genre | Mathematics |
ISBN | 0080478875 |
The first four chapters of this book give a comprehensive and unified theory of the Krylov methods. Many of these are shown to be particular examples ofthe block conjugate-gradient algorithm and it is this observation thatpermits the unification of the theory. The two major sub-classes of thosemethods, the Lanczos and the Hestenes-Stiefel, are developed in parallel asnatural generalisations of the Orthodir (GCR) and Orthomin algorithms. Theseare themselves based on Arnoldi's algorithm and a generalised Gram-Schmidtalgorithm and their properties, in particular their stability properties,are determined by the two matrices that define the block conjugate-gradientalgorithm. These are the matrix of coefficients and the preconditioningmatrix.In Chapter 5 the"transpose-free" algorithms based on the conjugate-gradient squared algorithm are presented while Chapter 6 examines the various ways in which the QMR technique has been exploited. Look-ahead methods and general block methods are dealt with in Chapters 7 and 8 while Chapter 9 is devoted to error analysis of two basic algorithms.In Chapter 10 the results of numerical testing of the more important algorithms in their basic forms (i.e. without look-ahead or preconditioning) are presented and these are related to the structure of the algorithms and the general theory. Graphs illustrating the performances of various algorithm/problem combinations are given via a CD-ROM.Chapter 11, by far the longest, gives a survey of preconditioning techniques. These range from the old idea of polynomial preconditioning via SOR and ILU preconditioning to methods like SpAI, AInv and the multigrid methods that were developed specifically for use with parallel computers. Chapter 12 is devoted to dual algorithms like Orthores and the reverse algorithms of Hegedus. Finally certain ancillary matters like reduction to Hessenberg form, Chebychev polynomials and the companion matrix are described in a series of appendices.·comprehensive and unified approach·up-to-date chapter on preconditioners·complete theory of stability·includes dual and reverse methods·comparison of algorithms on CD-ROM·objective assessment of algorithms
Computer Solution of Large Sparse Positive Definite Systems
Title | Computer Solution of Large Sparse Positive Definite Systems PDF eBook |
Author | Alan George |
Publisher | Prentice Hall |
Pages | 346 |
Release | 1981 |
Genre | Mathematics |
ISBN |
Introduction to Applied Linear Algebra
Title | Introduction to Applied Linear Algebra PDF eBook |
Author | Stephen Boyd |
Publisher | Cambridge University Press |
Pages | 477 |
Release | 2018-06-07 |
Genre | Business & Economics |
ISBN | 1316518965 |
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Direct Methods for Sparse Linear Systems
Title | Direct Methods for Sparse Linear Systems PDF eBook |
Author | Timothy A. Davis |
Publisher | SIAM |
Pages | 228 |
Release | 2006-09-01 |
Genre | Computers |
ISBN | 0898716136 |
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.