Computer Physics Research Trends

Computer Physics Research Trends
Title Computer Physics Research Trends PDF eBook
Author
Publisher
Pages 284
Release 2014-05-14
Genre Physics
ISBN 9781613242698

Download Computer Physics Research Trends Book in PDF, Epub and Kindle

Computer Physics Research Trends

Computer Physics Research Trends
Title Computer Physics Research Trends PDF eBook
Author Silvan J. Bianco
Publisher Nova Publishers
Pages 286
Release 2007
Genre Computers
ISBN 9781600215957

Download Computer Physics Research Trends Book in PDF, Epub and Kindle

This book includes within its scope: computational models in physics and physical chemistry; computer programs in physics and physical chemistry; computational models and programs associated with the design, control, and analysis of experiments; numerical methods and algorithms; algebraic computation; impact of advanced computer architecture and special purpose computers on computing in the physical sciences; software topics, including programming environments, languages, data bases, expert systems, and graphics packages related to physical sciences; and, analysis of computer systems performance.

Physics and Theoretical Computer Science

Physics and Theoretical Computer Science
Title Physics and Theoretical Computer Science PDF eBook
Author Jean-Pierre Gazeau
Publisher IOS Press
Pages 349
Release 2007
Genre Science
ISBN 1586037064

Download Physics and Theoretical Computer Science Book in PDF, Epub and Kindle

Aims to reinforce the interface between physical sciences, theoretical computer science, and discrete mathematics. This book assembles theoretical physicists and specialists of theoretical informatics and discrete mathematics in order to learn about developments in cryptography, algorithmics, and more.

Trends in Quantum Computing Research

Trends in Quantum Computing Research
Title Trends in Quantum Computing Research PDF eBook
Author Susan Shannon
Publisher Nova Publishers
Pages 264
Release 2006
Genre Computers
ISBN 9781594548406

Download Trends in Quantum Computing Research Book in PDF, Epub and Kindle

Quantum information processing is an exciting new emergent and interdisciplinary field. It combines questions of national security (When will today's public key cryptography be broken?) to questions of fundamental science (What are the fundamental limits to information processing?). It has thrived through the collaboration between the computer, engineering, mathematical and physical sciences. It is a field that is challenging our understanding of information, communication, computation, and of the fundamental laws of nature. This book brings together leading research in the field.

Modern Trends in Physics Research

Modern Trends in Physics Research
Title Modern Trends in Physics Research PDF eBook
Author Lotfia El Nadi
Publisher World Scientific Publishing Company
Pages 0
Release 2013
Genre Physics
ISBN 9789814504881

Download Modern Trends in Physics Research Book in PDF, Epub and Kindle

The objectives of the conference are to develop greater understanding of physics research and its applications to promote new industries; to innovate knowledge about recent breakthroughs in physics, both the fundamental and technological aspects; to implement of international cooperation in new trends in physics research and to improve the performance of the physics research facilities in Egypt. This proceedings highlights the latest results in the fields of astrophysics, atomic, molecular, condensed matter, laser, nuclear and particle physics. The peer refereed papers collected in this volume were written by international experts in these laser fields.

Computational Physics

Computational Physics
Title Computational Physics PDF eBook
Author Rubin H. Landau
Publisher John Wiley & Sons
Pages 597
Release 2024-03-20
Genre Science
ISBN 3527843310

Download Computational Physics Book in PDF, Epub and Kindle

Computational Physics The classic in the field for more than 25 years, now with increased emphasis on data science and new chapters on quantum computing, machine learning (AI), and general relativity Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior. Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems. Readers of the fourth edition of Computational Physics will also find: An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics A whole suite of supplementary material: Python programs, Jupyter notebooks and videos Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.

Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics
Title Machine Learning Meets Quantum Physics PDF eBook
Author Kristof T. Schütt
Publisher Springer Nature
Pages 473
Release 2020-06-03
Genre Science
ISBN 3030402452

Download Machine Learning Meets Quantum Physics Book in PDF, Epub and Kindle

Designing molecules and materials with desired properties is an important prerequisite for advancing technology in our modern societies. This requires both the ability to calculate accurate microscopic properties, such as energies, forces and electrostatic multipoles of specific configurations, as well as efficient sampling of potential energy surfaces to obtain corresponding macroscopic properties. Tools that can provide this are accurate first-principles calculations rooted in quantum mechanics, and statistical mechanics, respectively. Unfortunately, they come at a high computational cost that prohibits calculations for large systems and long time-scales, thus presenting a severe bottleneck both for searching the vast chemical compound space and the stupendously many dynamical configurations that a molecule can assume. To overcome this challenge, recently there have been increased efforts to accelerate quantum simulations with machine learning (ML). This emerging interdisciplinary community encompasses chemists, material scientists, physicists, mathematicians and computer scientists, joining forces to contribute to the exciting hot topic of progressing machine learning and AI for molecules and materials. The book that has emerged from a series of workshops provides a snapshot of this rapidly developing field. It contains tutorial material explaining the relevant foundations needed in chemistry, physics as well as machine learning to give an easy starting point for interested readers. In addition, a number of research papers defining the current state-of-the-art are included. The book has five parts (Fundamentals, Incorporating Prior Knowledge, Deep Learning of Atomistic Representations, Atomistic Simulations and Discovery and Design), each prefaced by editorial commentary that puts the respective parts into a broader scientific context.