Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations
Title Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations PDF eBook
Author Mitsuhiro T. Nakao
Publisher Springer Nature
Pages 469
Release 2019-11-11
Genre Mathematics
ISBN 9811376697

Download Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations Book in PDF, Epub and Kindle

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a “theoretical” proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form -∆u=f(x,u,∇u) with Dirichlet boundary conditions. Here, by “verified computation” is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors’ methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Fundamental Proof Methods in Computer Science

Fundamental Proof Methods in Computer Science
Title Fundamental Proof Methods in Computer Science PDF eBook
Author Konstantine Arkoudas
Publisher MIT Press
Pages 1223
Release 2017-04-28
Genre Computers
ISBN 0262342502

Download Fundamental Proof Methods in Computer Science Book in PDF, Epub and Kindle

A textbook that teaches students to read and write proofs using Athena. Proof is the primary vehicle for knowledge generation in mathematics. In computer science, proof has found an additional use: verifying that a particular system (or component, or algorithm) has certain desirable properties. This book teaches students how to read and write proofs using Athena, a freely downloadable computer language. Athena proofs are machine-checkable and written in an intuitive natural-deduction style. The book contains more than 300 exercises, most with full solutions. By putting proofs into practice, it demonstrates the fundamental role of logic and proof in computer science as no other existing text does. Guided by examples and exercises, students are quickly immersed in the most useful high-level proof methods, including equational reasoning, several forms of induction, case analysis, proof by contradiction, and abstraction/specialization. The book includes auxiliary material on SAT and SMT solving, automated theorem proving, and logic programming. The book can be used by upper undergraduate or graduate computer science students with a basic level of programming and mathematical experience. Professional programmers, practitioners of formal methods, and researchers in logic-related branches of computer science will find it a valuable reference.

Computer Arithmetic and Formal Proofs

Computer Arithmetic and Formal Proofs
Title Computer Arithmetic and Formal Proofs PDF eBook
Author Sylvie Boldo
Publisher Elsevier
Pages 328
Release 2017-11-17
Genre Computers
ISBN 0081011709

Download Computer Arithmetic and Formal Proofs Book in PDF, Epub and Kindle

Floating-point arithmetic is ubiquitous in modern computing, as it is the tool of choice to approximate real numbers. Due to its limited range and precision, its use can become quite involved and potentially lead to numerous failures. One way to greatly increase confidence in floating-point software is by computer-assisted verification of its correctness proofs. This book provides a comprehensive view of how to formally specify and verify tricky floating-point algorithms with the Coq proof assistant. It describes the Flocq formalization of floating-point arithmetic and some methods to automate theorem proofs. It then presents the specification and verification of various algorithms, from error-free transformations to a numerical scheme for a partial differential equation. The examples cover not only mathematical algorithms but also C programs as well as issues related to compilation. - Describes the notions of specification and weakest precondition computation and their practical use - Shows how to tackle algorithms that extend beyond the realm of simple floating-point arithmetic - Includes real analysis and a case study about numerical analysis

Computer Assisted Proof

Computer Assisted Proof
Title Computer Assisted Proof PDF eBook
Author Fouad Sabry
Publisher One Billion Knowledgeable
Pages 111
Release 2023-07-06
Genre Computers
ISBN

Download Computer Assisted Proof Book in PDF, Epub and Kindle

What Is Computer Assisted Proof A mathematical proof is considered to be computer-assisted if it has been generated by the computer in some way, even if just in part. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Computer-assisted proof Chapter 2: Mathematical proof Chapter 3: Theorem Chapter 4: Metamath Chapter 5: Model checking Chapter 6: Computer algebra Chapter 7: Formal verification Chapter 8: Validated numerics Chapter 9: Logic Theorist Chapter 10: Seventeen or Bust (II) Answering the public top questions about computer assisted proof. (III) Real world examples for the usage of computer assisted proof in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of computer assisted proof' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of computer assisted proof.

Proof Technology in Mathematics Research and Teaching

Proof Technology in Mathematics Research and Teaching
Title Proof Technology in Mathematics Research and Teaching PDF eBook
Author Gila Hanna
Publisher Springer Nature
Pages 374
Release 2019-10-02
Genre Education
ISBN 3030284832

Download Proof Technology in Mathematics Research and Teaching Book in PDF, Epub and Kindle

This book presents chapters exploring the most recent developments in the role of technology in proving. The full range of topics related to this theme are explored, including computer proving, digital collaboration among mathematicians, mathematics teaching in schools and universities, and the use of the internet as a site of proof learning. Proving is sometimes thought to be the aspect of mathematical activity most resistant to the influence of technological change. While computational methods are well known to have a huge importance in applied mathematics, there is a perception that mathematicians seeking to derive new mathematical results are unaffected by the digital era. The reality is quite different. Digital technologies have transformed how mathematicians work together, how proof is taught in schools and universities, and even the nature of proof itself. Checking billions of cases in extremely large but finite sets, impossible a few decades ago, has now become a standard method of proof. Distributed proving, by teams of mathematicians working independently on sections of a problem, has become very much easier as digital communication facilitates the sharing and comparison of results. Proof assistants and dynamic proof environments have influenced the verification or refutation of conjectures, and ultimately how and why proof is taught in schools. And techniques from computer science for checking the validity of programs are being used to verify mathematical proofs. Chapters in this book include not only research reports and case studies, but also theoretical essays, reviews of the state of the art in selected areas, and historical studies. The authors are experts in the field.

A Computer-Assisted Proof of Universality for Area-Preserving Maps

A Computer-Assisted Proof of Universality for Area-Preserving Maps
Title A Computer-Assisted Proof of Universality for Area-Preserving Maps PDF eBook
Author Jean Pierre Eckmann
Publisher American Mathematical Soc.
Pages 131
Release 1984
Genre Error analysis
ISBN 0821822896

Download A Computer-Assisted Proof of Universality for Area-Preserving Maps Book in PDF, Epub and Kindle

We study iterates of area-preserving maps as the simplest examples of conservative dynamical systems.

Accuracy and Reliability in Scientific Computing

Accuracy and Reliability in Scientific Computing
Title Accuracy and Reliability in Scientific Computing PDF eBook
Author Bo Einarsson
Publisher SIAM
Pages 348
Release 2005-08-01
Genre Science
ISBN 0898715849

Download Accuracy and Reliability in Scientific Computing Book in PDF, Epub and Kindle

This book investigates some of the difficulties related to scientific computing, describing how these can be overcome.