Lectures on Stochastic Programming
Title | Lectures on Stochastic Programming PDF eBook |
Author | Alexander Shapiro |
Publisher | SIAM |
Pages | 447 |
Release | 2009-01-01 |
Genre | Mathematics |
ISBN | 0898718759 |
Optimization problems involving stochastic models occur in almost all areas of science and engineering, such as telecommunications, medicine, and finance. Their existence compels a need for rigorous ways of formulating, analyzing, and solving such problems. This book focuses on optimization problems involving uncertain parameters and covers the theoretical foundations and recent advances in areas where stochastic models are available. Readers will find coverage of the basic concepts of modeling these problems, including recourse actions and the nonanticipativity principle. The book also includes the theory of two-stage and multistage stochastic programming problems; the current state of the theory on chance (probabilistic) constraints, including the structure of the problems, optimality theory, and duality; and statistical inference in and risk-averse approaches to stochastic programming.
Computational Stochastic Programming
Title | Computational Stochastic Programming PDF eBook |
Author | Lewis Ntaimo |
Publisher | Springer Nature |
Pages | 518 |
Release | |
Genre | |
ISBN | 3031524640 |
Applications of Stochastic Programming
Title | Applications of Stochastic Programming PDF eBook |
Author | Stein W. Wallace |
Publisher | SIAM |
Pages | 724 |
Release | 2005-01-01 |
Genre | Mathematics |
ISBN | 9780898718799 |
Consisting of two parts, this book presents papers describing publicly available stochastic programming systems that are operational. It presents a diverse collection of application papers in areas such as production, supply chain and scheduling, gaming, environmental and pollution control, financial modeling, telecommunications, and electricity.
Stochastic Linear Programming
Title | Stochastic Linear Programming PDF eBook |
Author | Peter Kall |
Publisher | Springer Science & Business Media |
Pages | 439 |
Release | 2010-11-02 |
Genre | Mathematics |
ISBN | 1441977295 |
This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. ... The presentation includes geometric interpretation, linear programming duality, and the simplex method in its primal and dual forms. ... The authors have made an effort to collect ... the most useful recent ideas and algorithms in this area. ... A guide to the existing software is included as well." (Darinka Dentcheva, Mathematical Reviews, Issue 2006 c) "This is a graduate text in optimisation whose main emphasis is in stochastic programming. The book is clearly written. ... This is a good book for providing mathematicians, economists and engineers with an almost complete start up information for working in the field. I heartily welcome its publication. ... It is evident that this book will constitute an obligatory reference source for the specialists of the field." (Carlos Narciso Bouza Herrera, Zentralblatt MATH, Vol. 1104 (6), 2007)
Constructive Computation in Stochastic Models with Applications
Title | Constructive Computation in Stochastic Models with Applications PDF eBook |
Author | Quan-Lin Li |
Publisher | Springer Science & Business Media |
Pages | 693 |
Release | 2011-02-02 |
Genre | Mathematics |
ISBN | 364211492X |
"Constructive Computation in Stochastic Models with Applications: The RG-Factorizations" provides a unified, constructive and algorithmic framework for numerical computation of many practical stochastic systems. It summarizes recent important advances in computational study of stochastic models from several crucial directions, such as stationary computation, transient solution, asymptotic analysis, reward processes, decision processes, sensitivity analysis as well as game theory. Graduate students, researchers and practicing engineers in the field of operations research, management sciences, applied probability, computer networks, manufacturing systems, transportation systems, insurance and finance, risk management and biological sciences will find this book valuable. Dr. Quan-Lin Li is an Associate Professor at the Department of Industrial Engineering of Tsinghua University, China.
Introduction to Stochastic Programming
Title | Introduction to Stochastic Programming PDF eBook |
Author | John R. Birge |
Publisher | Springer Science & Business Media |
Pages | 427 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 0387226184 |
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Stochastic Modelling and Analysis
Title | Stochastic Modelling and Analysis PDF eBook |
Author | |
Publisher | |
Pages | |
Release | 1988 |
Genre | |
ISBN |