Computational Solution of Nonlinear Systems of Equations
Title | Computational Solution of Nonlinear Systems of Equations PDF eBook |
Author | Eugene L. Allgower |
Publisher | American Mathematical Soc. |
Pages | 788 |
Release | 1990-04-03 |
Genre | Mathematics |
ISBN | 9780821896945 |
Nonlinear equations arise in essentially every branch of modern science, engineering, and mathematics. However, in only a very few special cases is it possible to obtain useful solutions to nonlinear equations via analytical calculations. As a result, many scientists resort to computational methods. This book contains the proceedings of the Joint AMS-SIAM Summer Seminar, ``Computational Solution of Nonlinear Systems of Equations,'' held in July 1988 at Colorado State University. The aim of the book is to give a wide-ranging survey of essentially all of the methods which comprise currently active areas of research in the computational solution of systems of nonlinear equations. A number of ``entry-level'' survey papers were solicited, and a series of test problems has been collected in an appendix. Most of the articles are accessible to students who have had a course in numerical analysis.
Methods for Solving Systems of Nonlinear Equations
Title | Methods for Solving Systems of Nonlinear Equations PDF eBook |
Author | Werner C. Rheinboldt |
Publisher | SIAM |
Pages | 157 |
Release | 1998-01-01 |
Genre | Mathematics |
ISBN | 9781611970012 |
This second edition provides much-needed updates to the original volume. Like the first edition, it emphasizes the ideas behind the algorithms as well as their theoretical foundations and properties, rather than focusing strictly on computational details; at the same time, this new version is now largely self-contained and includes essential proofs. Additions have been made to almost every chapter, including an introduction to the theory of inexact Newton methods, a basic theory of continuation methods in the setting of differentiable manifolds, and an expanded discussion of minimization methods. New information on parametrized equations and continuation incorporates research since the first edition.
Iterative Solution of Nonlinear Equations in Several Variables
Title | Iterative Solution of Nonlinear Equations in Several Variables PDF eBook |
Author | J. M. Ortega |
Publisher | Elsevier |
Pages | 593 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483276724 |
Computer Science and Applied Mathematics: Iterative Solution of Nonlinear Equations in Several Variables presents a survey of the basic theoretical results about nonlinear equations in n dimensions and analysis of the major iterative methods for their numerical solution. This book discusses the gradient mappings and minimization, contractions and the continuation property, and degree of a mapping. The general iterative and minimization methods, rates of convergence, and one-step stationary and multistep methods are also elaborated. This text likewise covers the contractions and nonlinear majorants, convergence under partial ordering, and convergence of minimization methods. This publication is a good reference for specialists and readers with an extensive functional analysis background.
Programming for Computations - MATLAB/Octave
Title | Programming for Computations - MATLAB/Octave PDF eBook |
Author | Svein Linge |
Publisher | Springer |
Pages | 228 |
Release | 2016-08-01 |
Genre | Computers |
ISBN | 3319324527 |
This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.
Iterative Methods for Linear and Nonlinear Equations
Title | Iterative Methods for Linear and Nonlinear Equations PDF eBook |
Author | C. T. Kelley |
Publisher | SIAM |
Pages | 179 |
Release | 1995-01-01 |
Genre | Mathematics |
ISBN | 9781611970944 |
Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.
Iterative Methods for Solving Nonlinear Equations and Systems
Title | Iterative Methods for Solving Nonlinear Equations and Systems PDF eBook |
Author | Juan R. Torregrosa |
Publisher | MDPI |
Pages | 494 |
Release | 2019-12-06 |
Genre | Mathematics |
ISBN | 3039219405 |
Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.
Solving Nonlinear Equations with Newton's Method
Title | Solving Nonlinear Equations with Newton's Method PDF eBook |
Author | C. T. Kelley |
Publisher | SIAM |
Pages | 117 |
Release | 2003-01-01 |
Genre | Mathematics |
ISBN | 9780898718898 |
This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.