Computational Modeling of Cognition and Behavior
Title | Computational Modeling of Cognition and Behavior PDF eBook |
Author | Simon Farrell |
Publisher | Cambridge University Press |
Pages | 485 |
Release | 2018-02-22 |
Genre | Psychology |
ISBN | 110710999X |
This book presents an integrated framework for developing and testing computational models in psychology and related disciplines. Researchers and students are given the knowledge and tools to interpret models published in their area, as well as to develop, fit, and test their own models.
Computational Modeling in Cognition
Title | Computational Modeling in Cognition PDF eBook |
Author | Stephan Lewandowsky |
Publisher | SAGE |
Pages | 377 |
Release | 2010-11-29 |
Genre | Psychology |
ISBN | 1452236194 |
An accessible introduction to the principles of computational and mathematical modeling in psychology and cognitive science This practical and readable work provides students and researchers, who are new to cognitive modeling, with the background and core knowledge they need to interpret published reports, and develop and apply models of their own. The book is structured to help readers understand the logic of individual component techniques and their relationships to each other.
Computational Models of Brain and Behavior
Title | Computational Models of Brain and Behavior PDF eBook |
Author | Ahmed A. Moustafa |
Publisher | John Wiley & Sons |
Pages | 588 |
Release | 2017-09-11 |
Genre | Psychology |
ISBN | 1119159075 |
A comprehensive Introduction to the world of brain and behavior computational models This book provides a broad collection of articles covering different aspects of computational modeling efforts in psychology and neuroscience. Specifically, it discusses models that span different brain regions (hippocampus, amygdala, basal ganglia, visual cortex), different species (humans, rats, fruit flies), and different modeling methods (neural network, Bayesian, reinforcement learning, data fitting, and Hodgkin-Huxley models, among others). Computational Models of Brain and Behavior is divided into four sections: (a) Models of brain disorders; (b) Neural models of behavioral processes; (c) Models of neural processes, brain regions and neurotransmitters, and (d) Neural modeling approaches. It provides in-depth coverage of models of psychiatric disorders, including depression, posttraumatic stress disorder (PTSD), schizophrenia, and dyslexia; models of neurological disorders, including Alzheimer’s disease, Parkinson’s disease, and epilepsy; early sensory and perceptual processes; models of olfaction; higher/systems level models and low-level models; Pavlovian and instrumental conditioning; linking information theory to neurobiology; and more. Covers computational approximations to intellectual disability in down syndrome Discusses computational models of pharmacological and immunological treatment in Alzheimer's disease Examines neural circuit models of serotonergic system (from microcircuits to cognition) Educates on information theory, memory, prediction, and timing in associative learning Computational Models of Brain and Behavior is written for advanced undergraduate, Master's and PhD-level students—as well as researchers involved in computational neuroscience modeling research.
Cognitive Modeling
Title | Cognitive Modeling PDF eBook |
Author | Thad A. Polk |
Publisher | MIT Press |
Pages | 1300 |
Release | 2002 |
Genre | Psychology |
ISBN | 9780262661164 |
A comprehensive introduction to the computational modeling of human cognition.
The Cambridge Handbook of Computational Psychology
Title | The Cambridge Handbook of Computational Psychology PDF eBook |
Author | Ron Sun |
Publisher | Cambridge University Press |
Pages | 767 |
Release | 2008-04-28 |
Genre | Computers |
ISBN | 0521674107 |
A cutting-edge reference source for the interdisciplinary field of computational cognitive modeling.
Computational Explorations in Cognitive Neuroscience
Title | Computational Explorations in Cognitive Neuroscience PDF eBook |
Author | Randall C. O'Reilly |
Publisher | MIT Press |
Pages | 540 |
Release | 2000-08-28 |
Genre | Medical |
ISBN | 9780262650540 |
This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the computational cognitive neuroscience. The goal of computational cognitive neuroscience is to understand how the brain embodies the mind by using biologically based computational models comprising networks of neuronlike units. This text, based on a course taught by Randall O'Reilly and Yuko Munakata over the past several years, provides an in-depth introduction to the main ideas in the field. The neural units in the simulations use equations based directly on the ion channels that govern the behavior of real neurons, and the neural networks incorporate anatomical and physiological properties of the neocortex. Thus the text provides the student with knowledge of the basic biology of the brain as well as the computational skills needed to simulate large-scale cognitive phenomena. The text consists of two parts. The first part covers basic neural computation mechanisms: individual neurons, neural networks, and learning mechanisms. The second part covers large-scale brain area organization and cognitive phenomena: perception and attention, memory, language, and higher-level cognition. The second part is relatively self-contained and can be used separately for mechanistically oriented cognitive neuroscience courses. Integrated throughout the text are more than forty different simulation models, many of them full-scale research-grade models, with friendly interfaces and accompanying exercises. The simulation software (PDP++, available for all major platforms) and simulations can be downloaded free of charge from the Web. Exercise solutions are available, and the text includes full information on the software.
Bayesian Cognitive Modeling
Title | Bayesian Cognitive Modeling PDF eBook |
Author | Michael D. Lee |
Publisher | Cambridge University Press |
Pages | 279 |
Release | 2014-04-03 |
Genre | Psychology |
ISBN | 1107653916 |
Bayesian inference has become a standard method of analysis in many fields of science. Students and researchers in experimental psychology and cognitive science, however, have failed to take full advantage of the new and exciting possibilities that the Bayesian approach affords. Ideal for teaching and self study, this book demonstrates how to do Bayesian modeling. Short, to-the-point chapters offer examples, exercises, and computer code (using WinBUGS or JAGS, and supported by Matlab and R), with additional support available online. No advance knowledge of statistics is required and, from the very start, readers are encouraged to apply and adjust Bayesian analyses by themselves. The book contains a series of chapters on parameter estimation and model selection, followed by detailed case studies from cognitive science. After working through this book, readers should be able to build their own Bayesian models, apply the models to their own data, and draw their own conclusions.