Computational Mathematics and Variational Analysis

Computational Mathematics and Variational Analysis
Title Computational Mathematics and Variational Analysis PDF eBook
Author Nicholas J. Daras
Publisher Springer Nature
Pages 564
Release 2020-06-06
Genre Mathematics
ISBN 3030446255

Download Computational Mathematics and Variational Analysis Book in PDF, Epub and Kindle

This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.

Techniques of Variational Analysis

Techniques of Variational Analysis
Title Techniques of Variational Analysis PDF eBook
Author Jonathan Borwein
Publisher Springer Science & Business Media
Pages 368
Release 2006-06-18
Genre Mathematics
ISBN 0387282718

Download Techniques of Variational Analysis Book in PDF, Epub and Kindle

Borwein is an authority in the area of mathematical optimization, and his book makes an important contribution to variational analysis Provides a good introduction to the topic

Variational Analysis

Variational Analysis
Title Variational Analysis PDF eBook
Author R. Tyrrell Rockafellar
Publisher Springer Science & Business Media
Pages 747
Release 2009-06-26
Genre Mathematics
ISBN 3642024319

Download Variational Analysis Book in PDF, Epub and Kindle

From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Variational Analysis and Aerospace Engineering

Variational Analysis and Aerospace Engineering
Title Variational Analysis and Aerospace Engineering PDF eBook
Author Aldo Frediani
Publisher Springer
Pages 535
Release 2016-12-27
Genre Mathematics
ISBN 3319456806

Download Variational Analysis and Aerospace Engineering Book in PDF, Epub and Kindle

This book presents papers surrounding the extensive discussions that took place from the ‘Variational Analysis and Aerospace Engineering’ workshop held at the Ettore Majorana Foundation and Centre for Scientific Culture in 2015. Contributions to this volume focus on advanced mathematical methods in aerospace engineering and industrial engineering such as computational fluid dynamics methods, optimization methods in aerodynamics, optimum controls, dynamic systems, the theory of structures, space missions, flight mechanics, control theory, algebraic geometry for CAD applications, and variational methods and applications. Advanced graduate students, researchers, and professionals in mathematics and engineering will find this volume useful as it illustrates current collaborative research projects in applied mathematics and aerospace engineering.

Convex Analysis and Variational Problems

Convex Analysis and Variational Problems
Title Convex Analysis and Variational Problems PDF eBook
Author Ivar Ekeland
Publisher SIAM
Pages 414
Release 1999-12-01
Genre Mathematics
ISBN 9781611971088

Download Convex Analysis and Variational Problems Book in PDF, Epub and Kindle

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Variational Analysis in Sobolev and BV Spaces

Variational Analysis in Sobolev and BV Spaces
Title Variational Analysis in Sobolev and BV Spaces PDF eBook
Author Hedy Attouch
Publisher SIAM
Pages 794
Release 2014-10-02
Genre Mathematics
ISBN 1611973473

Download Variational Analysis in Sobolev and BV Spaces Book in PDF, Epub and Kindle

This volume is an excellent guide for anyone interested in variational analysis, optimization, and PDEs. It offers a detailed presentation of the most important tools in variational analysis as well as applications to problems in geometry, mechanics, elasticity, and computer vision. This second edition covers several new topics: new section on capacity theory and elements of potential theory now includes the concepts of quasi-open sets and quasi-continuity; increased number of examples in the areas of linearized elasticity system, obstacles problems, convection-diffusion, and semilinear equations; new section on mass transportation problems and the Kantorovich relaxed formulation of the Monge problem; new subsection on stochastic homogenization establishes the mathematical tools coming from ergodic theory; and an entirely new and comprehensive chapter (17) devoted to gradient flows and the dynamical approach to equilibria. The book is intended for Ph.D. students, researchers, and practitioners who want to approach the field of variational analysis in a systematic way.

Computational Mathematics and Variational Analysis

Computational Mathematics and Variational Analysis
Title Computational Mathematics and Variational Analysis PDF eBook
Author
Publisher
Pages 0
Release 2020
Genre Calculus of variations
ISBN 9788303044624

Download Computational Mathematics and Variational Analysis Book in PDF, Epub and Kindle

This volume presents a broad discussion of computational methods and theories on various classical and modern research problems from pure and applied mathematics. Readers conducting research in mathematics, engineering, physics, and economics will benefit from the diversity of topics covered. Contributions from an international community treat the following subjects: calculus of variations, optimization theory, operations research, game theory, differential equations, functional analysis, operator theory, approximation theory, numerical analysis, asymptotic analysis, and engineering. Specific topics include algorithms for difference of monotone operators, variational inequalities in semi-inner product spaces, function variation principles and normed minimizers, equilibria of parametrized N-player nonlinear games, multi-symplectic numerical schemes for differential equations, time-delay multi-agent systems, computational methods in non-linear design of experiments, unsupervised stochastic learning, asymptotic statistical results, global-local transformation, scattering relations of elastic waves, generalized Ostrowski and trapezoid type rules, numerical approximation, Szász Durrmeyer operators and approximation, integral inequalities, behaviour of the solutions of functional equations, functional inequalities in complex Banach spaces, functional contractions in metric spaces.