Computational Intelligence in Medical Imaging
Title | Computational Intelligence in Medical Imaging PDF eBook |
Author | G. Schaefer |
Publisher | CRC Press |
Pages | 512 |
Release | 2009-03-24 |
Genre | Computers |
ISBN | 1420060619 |
CI Techniques & Algorithms for a Variety of Medical Imaging SituationsDocuments recent advances and stimulates further researchA compilation of the latest trends in the field, Computational Intelligence in Medical Imaging: Techniques and Applications explores how intelligent computing can bring enormous benefit to existing technology in medical
Computational Intelligence in Biomedical Engineering
Title | Computational Intelligence in Biomedical Engineering PDF eBook |
Author | Rezaul Begg |
Publisher | CRC Press |
Pages | 396 |
Release | 2007-12-04 |
Genre | Medical |
ISBN | 1420005898 |
As in many other fields, biomedical engineers benefit from the use of computational intelligence (CI) tools to solve complex and non-linear problems. The benefits could be even greater if there were scientific literature that specifically focused on the biomedical applications of computational intelligence techniques. The first comprehensive field-
Artificial Intelligence in Medical Imaging
Title | Artificial Intelligence in Medical Imaging PDF eBook |
Author | Erik R. Ranschaert |
Publisher | Springer |
Pages | 369 |
Release | 2019-01-29 |
Genre | Medical |
ISBN | 3319948784 |
This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.
Modern Computational Intelligence Methods for the Interpretation of Medical Images
Title | Modern Computational Intelligence Methods for the Interpretation of Medical Images PDF eBook |
Author | Ryszard Tadeusiewicz |
Publisher | Springer Science & Business Media |
Pages | 210 |
Release | 2008-01-03 |
Genre | Medical |
ISBN | 3540753990 |
This work by two accomplished Polish researchers provides medical technicians and researchers alike with detailed descriptions of up-to-date methods used for computer processing and interpretation of medical images. The broad scope of the book takes in images acquisition, storing with compression, processing, analysis, recognition and also its automatic understanding. The introduction provides a general overview of the computer vision methods designed for medical images.
Artificial Intelligence in Medical Imaging
Title | Artificial Intelligence in Medical Imaging PDF eBook |
Author | Lia Morra |
Publisher | CRC Press |
Pages | 165 |
Release | 2019-11-25 |
Genre | Science |
ISBN | 1000753085 |
Choice Recommended Title, January 2021 This book, written by authors with more than a decade of experience in the design and development of artificial intelligence (AI) systems in medical imaging, will guide readers in the understanding of one of the most exciting fields today. After an introductory description of classical machine learning techniques, the fundamentals of deep learning are explained in a simple yet comprehensive manner. The book then proceeds with a historical perspective of how medical AI developed in time, detailing which applications triumphed and which failed, from the era of computer aided detection systems on to the current cutting-edge applications in deep learning today, which are starting to exhibit on-par performance with clinical experts. In the last section, the book offers a view on the complexity of the validation of artificial intelligence applications for commercial use, describing the recently introduced concept of software as a medical device, as well as good practices and relevant considerations for training and testing machine learning systems for medical use. Open problematics on the validation for public use of systems which by nature continuously evolve through new data is also explored. The book will be of interest to graduate students in medical physics, biomedical engineering and computer science, in addition to researchers and medical professionals operating in the medical imaging domain, who wish to better understand these technologies and the future of the field. Features: An accessible yet detailed overview of the field Explores a hot and growing topic Provides an interdisciplinary perspective
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare
Title | Handbook of Computational Intelligence in Biomedical Engineering and Healthcare PDF eBook |
Author | Janmenjoy Nayak |
Publisher | Academic Press |
Pages | 398 |
Release | 2021-04-08 |
Genre | Science |
ISBN | 0128222611 |
Handbook of Computational Intelligence in Biomedical Engineering and Healthcare helps readers analyze and conduct advanced research in specialty healthcare applications surrounding oncology, genomics and genetic data, ontologies construction, bio-memetic systems, biomedical electronics, protein structure prediction, and biomedical data analysis. The book provides the reader with a comprehensive guide to advanced computational intelligence, spanning deep learning, fuzzy logic, connectionist systems, evolutionary computation, cellular automata, self-organizing systems, soft computing, and hybrid intelligent systems in biomedical and healthcare applications. Sections focus on important biomedical engineering applications, including biosensors, enzyme immobilization techniques, immuno-assays, and nanomaterials for biosensors and other biomedical techniques. Other sections cover gene-based solutions and applications through computational intelligence techniques and the impact of nonlinear/unstructured data on experimental analysis. - Presents a comprehensive handbook that covers an Introduction to Computational Intelligence in Biomedical Engineering and Healthcare, Computational Intelligence Techniques, and Advanced and Emerging Techniques in Computational Intelligence - Helps readers analyze and do advanced research in specialty healthcare applications - Includes links to websites, videos, articles and other online content to expand and support primary learning objectives
Medical Imaging
Title | Medical Imaging PDF eBook |
Author | K.C. Santosh |
Publisher | CRC Press |
Pages | 251 |
Release | 2019-08-20 |
Genre | Computers |
ISBN | 0429642490 |
Winner of the "Outstanding Academic Title" recognition by Choice for the 2020 OAT Awards. The Choice OAT Award represents the highest caliber of scholarly titles that have been reviewed by Choice and conveys the extraordinary recognition of the academic community. The book discusses varied topics pertaining to advanced or up-to-date techniques in medical imaging using artificial intelligence (AI), image recognition (IR) and machine learning (ML) algorithms/techniques. Further, coverage includes analysis of chest radiographs (chest x-rays) via stacked generalization models, TB type detection using slice separation approach, brain tumor image segmentation via deep learning, mammogram mass separation, epileptic seizures, breast ultrasound images, knee joint x-ray images, bone fracture detection and labeling, and diabetic retinopathy. It also reviews 3D imaging in biomedical applications and pathological medical imaging.