Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques
Title | Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques PDF eBook |
Author | Marwala, Tshilidzi |
Publisher | IGI Global |
Pages | 325 |
Release | 2009-04-30 |
Genre | Computers |
ISBN | 1605663379 |
"This book is for those who use data analysis to build decision support systems, particularly engineers, scientists and statisticians"--Provided by publisher.
Condition Monitoring Using Computational Intelligence Methods
Title | Condition Monitoring Using Computational Intelligence Methods PDF eBook |
Author | Tshilidzi Marwala |
Publisher | Springer Science & Business Media |
Pages | 247 |
Release | 2012-01-25 |
Genre | Technology & Engineering |
ISBN | 1447123808 |
Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as: • fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines.
Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence
Title | Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence PDF eBook |
Author | Tshilidzi Marwala |
Publisher | World Scientific |
Pages | 329 |
Release | 2018-10-22 |
Genre | Computers |
ISBN | 9813271248 |
This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.
Smart Computing Applications in Crowdfunding
Title | Smart Computing Applications in Crowdfunding PDF eBook |
Author | Bo Xing |
Publisher | CRC Press |
Pages | 533 |
Release | 2018-12-07 |
Genre | Business & Economics |
ISBN | 1351265075 |
The book focuses on smart computing for crowdfunding usage, looking at the crowdfunding landscape, e.g., reward-, donation-, equity-, P2P-based and the crowdfunding ecosystem, e.g., regulator, asker, backer, investor, and operator. The increased complexity of fund raising scenario, driven by the broad economic environment as well as the need for using alternative funding sources, has sparked research in smart computing techniques. Covering a wide range of detailed topics, the authors of this book offer an outstanding overview of the current state of the art; providing deep insights into smart computing methods, tools, and their applications in crowdfunding; exploring the importance of smart analysis, prediction, and decision-making within the fintech industry. This book is intended to be an authoritative and valuable resource for professional practitioners and researchers alike, as well as finance engineering, and computer science students who are interested in crowdfunding and other emerging fintech topics.
Economic Modeling Using Artificial Intelligence Methods
Title | Economic Modeling Using Artificial Intelligence Methods PDF eBook |
Author | Tshilidzi Marwala |
Publisher | Springer Science & Business Media |
Pages | 271 |
Release | 2013-04-02 |
Genre | Computers |
ISBN | 1447150104 |
Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.
Handbook Of Machine Learning - Volume 2: Optimization And Decision Making
Title | Handbook Of Machine Learning - Volume 2: Optimization And Decision Making PDF eBook |
Author | Tshilidzi Marwala |
Publisher | World Scientific |
Pages | 321 |
Release | 2019-11-21 |
Genre | Computers |
ISBN | 981120568X |
Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.
Artificial Intelligence in Economics and Finance Theories
Title | Artificial Intelligence in Economics and Finance Theories PDF eBook |
Author | Tankiso Moloi |
Publisher | Springer Nature |
Pages | 131 |
Release | 2020-05-07 |
Genre | Computers |
ISBN | 3030429628 |
As Artificial Intelligence (AI) seizes all aspects of human life, there is a fundamental shift in the way in which humans are thinking of and doing things. Ordinarily, humans have relied on economics and finance theories to make sense of, and predict concepts such as comparative advantage, long run economic growth, lack or distortion of information and failures, role of labour as a factor of production and the decision making process for the purpose of allocating resources among other theories. Of interest though is that literature has not attempted to utilize these advances in technology in order to modernize economic and finance theories that are fundamental in the decision making process for the purpose of allocating scarce resources among other things. With the simulated intelligence in machines, which allows machines to act like humans and to some extent even anticipate events better than humans, thanks to their ability to handle massive data sets, this book will use artificial intelligence to explain what these economic and finance theories mean in the context of the agent wanting to make a decision. The main feature of finance and economic theories is that they try to eliminate the effects of uncertainties by attempting to bring the future to the present. The fundamentals of this statement is deeply rooted in risk and risk management. In behavioural sciences, economics as a discipline has always provided a well-established foundation for understanding uncertainties and what this means for decision making. Finance and economics have done this through different models which attempt to predict the future. On its part, risk management attempts to hedge or mitigate these uncertainties in order for “the planner” to reach the favourable outcome. This book focuses on how AI is to redefine certain important economic and financial theories that are specifically used for the purpose of eliminating uncertainties so as to allow agents to make informed decisions. In effect, certain aspects of finance and economic theories cannot be understood in their entirety without the incorporation of AI.