Computational Framework for Knowledge
Title | Computational Framework for Knowledge PDF eBook |
Author | Syed V. Ahamed |
Publisher | John Wiley & Sons |
Pages | 568 |
Release | 2009-07-31 |
Genre | Technology & Engineering |
ISBN | 0470480416 |
"Intriguing . . . [filled with] new ideas about overarching intellectual themes that govern our technologies and our society." —Nikil Jayant, Eminent Scholar, Georgia Research Alliance "Dr. Ahamed is correct in observing that 'silicon and glass have altered the rhythm of mind' and that computers need to be more 'human.'" —Bishnu S. Atal, Member, National Academy of Engineering This book combines philosophical, societal, and artificial intelligence concepts with those of computer science and information technology to demonstrate novel ways in which computers can simplify data mining on the Internet. It describes numerous innovative methods that go well beyond information retrieval to allow computers to accomplish such tasks as processing, classifying, prioritizing, and reconstituting knowledge. The book is divided into five parts: New knowledge sensing and filtering environments Concept building and wisdom machines General structure and theory of knowledge Verb functions and noun objects Humanistic and semi-human systems This book offers new mathematical methodologies and concrete HW/SW/FW configurations for the IT specialist to help their corporations explore, exploit, compete, and win global market share.
Computational Frameworks
Title | Computational Frameworks PDF eBook |
Author | Mamadou Kaba Traore |
Publisher | Elsevier |
Pages | 138 |
Release | 2017-07-07 |
Genre | Computers |
ISBN | 0081023162 |
Computational Frameworks: Systems, Models and Applications provides an overview of advanced perspectives that bridges the gap between frontline research and practical efforts. It is unique in showing the interdisciplinary nature of this area and the way in which it interacts with emerging technologies and techniques. As computational systems are a dominating part of daily lives and a required support for most of the engineering sciences, this book explores their usage (e.g. big data, high performance clusters, databases and information systems, integrated and embedded hardware/software components, smart devices, mobile and pervasive networks, cyber physical systems, etc.). - Provides a unique presentation on the views of frontline researchers on computational systems theory and applications in one holistic scope - Cover both computational science and engineering - Bridges the gap between frontline research and practical efforts
Computational Frameworks for the Fast Fourier Transform
Title | Computational Frameworks for the Fast Fourier Transform PDF eBook |
Author | Charles Van Loan |
Publisher | SIAM |
Pages | 285 |
Release | 1992-01-01 |
Genre | Mathematics |
ISBN | 0898712858 |
The author captures the interplay between mathematics and the design of effective numerical algorithms.
Computational Thinking Education
Title | Computational Thinking Education PDF eBook |
Author | Siu-Cheung Kong |
Publisher | Springer |
Pages | 377 |
Release | 2019-07-04 |
Genre | Education |
ISBN | 9811365288 |
This This book is open access under a CC BY 4.0 license.This book offers a comprehensive guide, covering every important aspect of computational thinking education. It provides an in-depth discussion of computational thinking, including the notion of perceiving computational thinking practices as ways of mapping models from the abstraction of data and process structures to natural phenomena. Further, it explores how computational thinking education is implemented in different regions, and how computational thinking is being integrated into subject learning in K-12 education. In closing, it discusses computational thinking from the perspective of STEM education, the use of video games to teach computational thinking, and how computational thinking is helping to transform the quality of the workforce in the textile and apparel industry.
Computational Trust Models and Machine Learning
Title | Computational Trust Models and Machine Learning PDF eBook |
Author | Xin Liu |
Publisher | CRC Press |
Pages | 234 |
Release | 2014-10-29 |
Genre | Computers |
ISBN | 1482226669 |
Computational Trust Models and Machine Learning provides a detailed introduction to the concept of trust and its application in various computer science areas, including multi-agent systems, online social networks, and communication systems. Identifying trust modeling challenges that cannot be addressed by traditional approaches, this book: Explains how reputation-based systems are used to determine trust in diverse online communities Describes how machine learning techniques are employed to build robust reputation systems Explores two distinctive approaches to determining credibility of resources—one where the human role is implicit, and one that leverages human input explicitly Shows how decision support can be facilitated by computational trust models Discusses collaborative filtering-based trust aware recommendation systems Defines a framework for translating a trust modeling problem into a learning problem Investigates the objectivity of human feedback, emphasizing the need to filter out outlying opinions Computational Trust Models and Machine Learning effectively demonstrates how novel machine learning techniques can improve the accuracy of trust assessment.
Computational Learning Theories
Title | Computational Learning Theories PDF eBook |
Author | David C. Gibson |
Publisher | Springer Nature |
Pages | 164 |
Release | |
Genre | |
ISBN | 3031658981 |
Causal Models
Title | Causal Models PDF eBook |
Author | Steven Sloman |
Publisher | Oxford University Press |
Pages | 226 |
Release | 2005-07-28 |
Genre | Psychology |
ISBN | 0198040377 |
Human beings are active agents who can think. To understand how thought serves action requires understanding how people conceive of the relation between cause and effect, between action and outcome. In cognitive terms, how do people construct and reason with the causal models we use to represent our world? A revolution is occurring in how statisticians, philosophers, and computer scientists answer this question. Those fields have ushered in new insights about causal models by thinking about how to represent causal structure mathematically, in a framework that uses graphs and probability theory to develop what are called causal Bayesian networks. The framework starts with the idea that the purpose of causal structure is to understand and predict the effects of intervention. How does intervening on one thing affect other things? This is not a question merely about probability (or logic), but about action. The framework offers a new understanding of mind: Thought is about the effects of intervention and cognition is thus intimately tied to actions that take place either in the actual physical world or in imagination, in counterfactual worlds. The book offers a conceptual introduction to the key mathematical ideas, presenting them in a non-technical way, focusing on the intuitions rather than the theorems. It tries to show why the ideas are important to understanding how people explain things and why thinking not only about the world as it is but the world as it could be is so central to human action. The book reviews the role of causality, causal models, and intervention in the basic human cognitive functions: decision making, reasoning, judgment, categorization, inductive inference, language, and learning. In short, the book offers a discussion about how people think, talk, learn, and explain things in causal terms, in terms of action and manipulation.