Computational Electromagnetics

Computational Electromagnetics
Title Computational Electromagnetics PDF eBook
Author Anders Bondeson
Publisher Springer Science & Business Media
Pages 232
Release 2005-08-15
Genre Mathematics
ISBN 0387261583

Download Computational Electromagnetics Book in PDF, Epub and Kindle

Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Advances in FDTD Computational Electrodynamics

Advances in FDTD Computational Electrodynamics
Title Advances in FDTD Computational Electrodynamics PDF eBook
Author Allen Taflove
Publisher Artech House
Pages 640
Release 2013
Genre Science
ISBN 1608071707

Download Advances in FDTD Computational Electrodynamics Book in PDF, Epub and Kindle

Advances in photonics and nanotechnology have the potential to revolutionize humanitys ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwells equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwells equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech House books in this area are among the top ten most-cited in the history of engineering. This cutting-edge resource helps readers understand the latest developments in computational modeling of nanoscale optical microscopy and microchip lithography, as well as nanoscale plasmonics and biophotonics.

Numerical Methods in Computational Electrodynamics

Numerical Methods in Computational Electrodynamics
Title Numerical Methods in Computational Electrodynamics PDF eBook
Author Ursula van Rienen
Publisher Springer Science & Business Media
Pages 387
Release 2012-12-06
Genre Computers
ISBN 3642568025

Download Numerical Methods in Computational Electrodynamics Book in PDF, Epub and Kindle

treated in more detail. They are just specimen of larger classes of schemes. Es sentially, we have to distinguish between semi-analytical methods, discretiza tion methods, and lumped circuit models. The semi-analytical methods and the discretization methods start directly from Maxwell's equations. Semi-analytical methods are concentrated on the analytical level: They use a computer only to evaluate expressions and to solve resulting linear algebraic problems. The best known semi-analytical methods are the mode matching method, which is described in subsection 2. 1, the method of integral equations, and the method of moments. In the method of integral equations, the given boundary value problem is transformed into an integral equation with the aid of a suitable Greens' function. In the method of moments, which includes the mode matching method as a special case, the solution function is represented by a linear combination of appropriately weighted basis func tions. The treatment of complex geometrical structures is very difficult for these methods or only possible after geometric simplifications: In the method of integral equations, the Greens function has to satisfy the boundary condi tions. In the mode matching method, it must be possible to decompose the domain into subdomains in which the problem can be solved analytically, thus allowing to find the basis functions. Nevertheless, there are some ap plications for which the semi-analytic methods are the best suited solution methods. For example, an application from accelerator physics used the mode matching technique (see subsection 5. 4).

Computational Electrodynamics

Computational Electrodynamics
Title Computational Electrodynamics PDF eBook
Author Allen Taflove
Publisher Artech House Publishers
Pages 1050
Release 2005
Genre Science
ISBN

Download Computational Electrodynamics Book in PDF, Epub and Kindle

This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers you the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. There has been considerable advancement in FDTD computational technology over the past few years, and this new edition brings you the very latest details with four new invited chapters on advanced techniques for PSTD, unconditional stability, provably stable FDTD-FETD hybrids, and hardware acceleration. Moreover, you find many completely new sections throughout the book, including major updates on convolutional PML ABCs; dispersive, nonlinear, classical-gain, and quantum-gain materials; and micro-, nano-, and bio- photonics.

Essentials of Computational Electromagnetics

Essentials of Computational Electromagnetics
Title Essentials of Computational Electromagnetics PDF eBook
Author Xin-Qing Sheng
Publisher John Wiley & Sons
Pages 291
Release 2012-03-22
Genre Science
ISBN 0470829656

Download Essentials of Computational Electromagnetics Book in PDF, Epub and Kindle

Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Computational Electromagnetics for RF and Microwave Engineering

Computational Electromagnetics for RF and Microwave Engineering
Title Computational Electromagnetics for RF and Microwave Engineering PDF eBook
Author David B. Davidson
Publisher Cambridge University Press
Pages 450
Release 2005-02-24
Genre Juvenile Nonfiction
ISBN 9780521838597

Download Computational Electromagnetics for RF and Microwave Engineering Book in PDF, Epub and Kindle

Publisher Description

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields
Title Theory and Computation of Electromagnetic Fields PDF eBook
Author Jian-Ming Jin
Publisher John Wiley & Sons
Pages 744
Release 2015-08-10
Genre Science
ISBN 111910808X

Download Theory and Computation of Electromagnetic Fields Book in PDF, Epub and Kindle

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.