Computational Complexity
Title | Computational Complexity PDF eBook |
Author | Sanjeev Arora |
Publisher | Cambridge University Press |
Pages | 609 |
Release | 2009-04-20 |
Genre | Computers |
ISBN | 0521424267 |
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Recursion Theory and Computational Complexity
Title | Recursion Theory and Computational Complexity PDF eBook |
Author | G. Lolli |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2011-06-17 |
Genre | Mathematics |
ISBN | 364211072X |
S. Homer: Admissible recursion theory.- B.E. Jacobs: Computational complexity and recursion theory.- D. Normann: A survey of set recursion.- G.E. Sacks: Priority arguments in Higgler recursion.- R.I. Soare: Construction in the recursively enumerable degrees.- W. Maass: Recursively invariant recursion theory.
The Foundations of Computability Theory
Title | The Foundations of Computability Theory PDF eBook |
Author | Borut Robič |
Publisher | Springer Nature |
Pages | 422 |
Release | 2020-11-13 |
Genre | Computers |
ISBN | 3662624214 |
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
Computability Theory
Title | Computability Theory PDF eBook |
Author | Herbert B. Enderton |
Publisher | Academic Press |
Pages | 193 |
Release | 2010-12-30 |
Genre | Mathematics |
ISBN | 0123849594 |
Computability Theory: An Introduction to Recursion Theory provides a concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results. The basic concepts and techniques of computability theory are placed in their historical, philosophical and logical context. This presentation is characterized by an unusual breadth of coverage and the inclusion of advanced topics not to be found elsewhere in the literature at this level. The text includes both the standard material for a first course in computability and more advanced looks at degree structures, forcing, priority methods, and determinacy. The final chapter explores a variety of computability applications to mathematics and science. Computability Theory is an invaluable text, reference, and guide to the direction of current research in the field. Nowhere else will you find the techniques and results of this beautiful and basic subject brought alive in such an approachable way. - Frequent historical information presented throughout - More extensive motivation for each of the topics than other texts currently available - Connects with topics not included in other textbooks, such as complexity theory
A Recursive Introduction to the Theory of Computation
Title | A Recursive Introduction to the Theory of Computation PDF eBook |
Author | Carl Smith |
Publisher | Springer Science & Business Media |
Pages | 155 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1441985018 |
The aim of this textbook is to present an account of the theory of computation. After introducing the concept of a model of computation and presenting various examples, the author explores the limitations of effective computation via basic recursion theory. Self-reference and other methods are introduced as fundamental and basic tools for constructing and manipulating algorithms. From there the book considers the complexity of computations and the notion of a complexity measure is introduced. Finally, the book culminates in considering time and space measures and in classifying computable functions as being either feasible or not. The author assumes only a basic familiarity with discrete mathematics and computing, making this textbook ideal for a graduate-level introductory course. It is based on many such courses presented by the author and so numerous exercises are included. In addition, the solutions to most of these exercises are provided.
Complexity and Real Computation
Title | Complexity and Real Computation PDF eBook |
Author | Lenore Blum |
Publisher | Springer Science & Business Media |
Pages | 456 |
Release | 2012-12-06 |
Genre | Computers |
ISBN | 1461207010 |
The classical theory of computation has its origins in the work of Goedel, Turing, Church, and Kleene and has been an extraordinarily successful framework for theoretical computer science. The thesis of this book, however, is that it provides an inadequate foundation for modern scientific computation where most of the algorithms are real number algorithms. The goal of this book is to develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing. Along the way, the authors consider such fundamental problems as: * Is the Mandelbrot set decidable? * For simple quadratic maps, is the Julia set a halting set? * What is the real complexity of Newton's method? * Is there an algorithm for deciding the knapsack problem in a ploynomial number of steps? * Is the Hilbert Nullstellensatz intractable? * Is the problem of locating a real zero of a degree four polynomial intractable? * Is linear programming tractable over the reals? The book is divided into three parts: The first part provides an extensive introduction and then proves the fundamental NP-completeness theorems of Cook-Karp and their extensions to more general number fields as the real and complex numbers. The later parts of the book develop a formal theory of computation which integrates major themes of the classical theory and which is more directly applicable to problems in mathematics, numerical analysis, and scientific computing.
Computational Complexity
Title | Computational Complexity PDF eBook |
Author | Oded Goldreich |
Publisher | Cambridge University Press |
Pages | 632 |
Release | 2008-04-28 |
Genre | Computers |
ISBN | 9780521884730 |
This book offers a comprehensive perspective to modern topics in complexity theory, which is a central field of the theoretical foundations of computer science. It addresses the looming question of what can be achieved within a limited amount of time with or without other limited natural computational resources. Can be used as an introduction for advanced undergraduate and graduate students as either a textbook or for self-study, or to experts, since it provides expositions of the various sub-areas of complexity theory such as hardness amplification, pseudorandomness and probabilistic proof systems.