Computational and Statistical Epigenomics

Computational and Statistical Epigenomics
Title Computational and Statistical Epigenomics PDF eBook
Author Andrew E. Teschendorff
Publisher Springer
Pages 218
Release 2015-05-12
Genre Science
ISBN 940179927X

Download Computational and Statistical Epigenomics Book in PDF, Epub and Kindle

This book introduces the reader to modern computational and statistical tools for translational epigenomics research. Over the last decade, epigenomics has emerged as a key area of molecular biology, epidemiology and genome medicine. Epigenomics not only offers us a deeper understanding of fundamental cellular biology, but also provides us with the basis for an improved understanding and management of complex diseases. From novel biomarkers for risk prediction, early detection, diagnosis and prognosis of common diseases, to novel therapeutic strategies, epigenomics is set to play a key role in the personalized medicine of the future. In this book we introduce the reader to some of the most important computational and statistical methods for analyzing epigenomic data, with a special focus on DNA methylation. Topics include normalization, correction for cellular heterogeneity, batch effects, clustering, supervised analysis and integrative methods for systems epigenomics. This book will be of interest to students and researchers in bioinformatics, biostatistics, biologists and clinicians alike. Dr. Andrew E. Teschendorff is Head of the Computational Systems Genomics Lab at the CAS-MPG Partner Institute for Computational Biology, Shanghai, China, as well as an Honorary Research Fellow at the UCL Cancer Institute, University College London, UK.

Computational Epigenetics and Diseases

Computational Epigenetics and Diseases
Title Computational Epigenetics and Diseases PDF eBook
Author
Publisher Academic Press
Pages 450
Release 2019-02-06
Genre Business & Economics
ISBN 0128145145

Download Computational Epigenetics and Diseases Book in PDF, Epub and Kindle

Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases

Computational Epigenomics and Disease

Computational Epigenomics and Disease
Title Computational Epigenomics and Disease PDF eBook
Author Misook Ha
Publisher Academic Press
Pages 320
Release 2017-01-01
Genre Medical
ISBN 9780128041048

Download Computational Epigenomics and Disease Book in PDF, Epub and Kindle

Computational Epigenomics and Diseases: Epigenomic Data Analytics for Human Health Application explains the current computational approaches inferring epigenetic mechanisms from epigenetic data. Epigenetic research leads to a considerable amount of data that can be more efficiently organized and analyzed using computer-based systems. All applicable computational approaches are explained in detail within this volume. Computational Epigenetics discusses topics such as statistical analysis and management of big epigenetics datasets; relationships among epigenetic factors and diseases; computational inference of spatial organization of genome; differential regulations and inference of variations of chromatin modifications; and systems biology approaches for identifying chromatin regulators. Additionally, strategies for applying epigenetics data analysis results to disease diagnosis, prognosis, and case studies are included in order to provide thorough and translational comprehension and applicability. The book is a valuable resource for computer scientists, mathematicians, and statisticians interested in bioinformatics and computational biology approaches to epigenetic data analysis, as well as geneticists who are looking to improve their knowledge of computational analytics for their research. Explains the computational methods inferring features of epigenetic marks; Describes the basic computational methods for understanding and deciphering chromatin signatures at the primary organization level; Offers example publications and case studies to show the range of possible applications of the computational analyses of epigenetics data.

Computational Epigenomics and Epitranscriptomics

Computational Epigenomics and Epitranscriptomics
Title Computational Epigenomics and Epitranscriptomics PDF eBook
Author Pedro H. Oliveira
Publisher Springer Nature
Pages 267
Release 2023-02-01
Genre Science
ISBN 107162962X

Download Computational Epigenomics and Epitranscriptomics Book in PDF, Epub and Kindle

This volume details state-of-the-art computational methods designed to manage, analyze, and generally leverage epigenomic and epitranscriptomic data. Chapters guide readers through fine-mapping and quantification of modifications, visual analytics, imputation methods, supervised analysis, and integrative approaches for single-cell data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and thorough, Computational Epigenomics and Epitranscriptomics aims to provide an overview of epiomic protocols, making it easier for researchers to extract impactful biological insight from their data.

Computational and Statistical Approaches to Genomics

Computational and Statistical Approaches to Genomics
Title Computational and Statistical Approaches to Genomics PDF eBook
Author Wei Zhang
Publisher Springer Science & Business Media
Pages 426
Release 2007-12-26
Genre Science
ISBN 0387262881

Download Computational and Statistical Approaches to Genomics Book in PDF, Epub and Kindle

The second edition of this book adds eight new contributors to reflect a modern cutting edge approach to genomics. It contains the newest research results on genomic analysis and modeling using state-of-the-art methods from engineering, statistics, and genomics. These tools and models are then applied to real biological and clinical problems. The book’s original seventeen chapters are also updated to provide new initiatives and directions.

Computational Epigenomics

Computational Epigenomics
Title Computational Epigenomics PDF eBook
Author Angela Yen
Publisher
Pages 225
Release 2016
Genre
ISBN

Download Computational Epigenomics Book in PDF, Epub and Kindle

One of the fundamental aims of biology is to determine what lies at the root of differences across individuals, species, diseases, and cell types. Furthermore, the sequencing of genomes has revolutionized the ways in which scientists can investigate biological processes and disease pathways; new genome-wide, high-throughput experiments require computer scientists with a biological understanding to analyze and interpret the data to improve our understanding about life science. This provides us with a key opportunity to use computational techniques for new biological discoveries. While genetic variation plays an important role in influence phenotype, sequence alone cannot account for all differences: for example, different types of cells in an individual have varying function and attributes, but identical genetic makeup. This highlights the importance of studying epigenetic changes, which are dynamic chemical changes to and around the DNA. While the DNA of every cell in an individual is the same, the epigenetic context for that DNA varies from cell to cell. In this way, these epigenetic differences play a crucial role in gene regulation, with epigenetic changes both causing and recording regulatory mechanisms. In this thesis, we combine the power of computational, statistical, and data science approaches with the new wave of epigenetic data at a genome-wide level in a number of ways. First, in chapter 2, we demonstrate the importance of computational analysis at an epigenomic level by identifying an epigenomic signature of the olfactory receptor gene family that gives insight into the mechanism behind monogenic gene regulation. Next, in chapter 3, we explain our development of ChromDiff, a novel statistical and information theoretic computational methodology to identify chromatin state differences in groups of samples. In our methodology, we use correction for external covariates to isolate the relevant signal, and as a result, we find that our method outperforms existing computational methods, with further validation through randomized simulations. In chapter 4, we apply our methodology to characteristics including sex, developmental age, and tissue type, we unveil relevant chromatin states and genes that distinguish the groups of epigenomes, with further validation of our results through differential expression analysis and gene set enrichment. In chapter 5, we show the power of integrative analysis through the combination of DNA methylation data with chromatin state profiles, cell types, sample groups, experimental technologies, and histone mark data to reveal insightful epigenetic patterns and relationships. Finally, in chapter 6, we identify "hidden" or "unknown" covariates in epigenomic data by using agnostic principal component analysis on our samples to discover similarities between our known covariates and the identified components. In summation, our research highlights the importance of both algorithm development and method application for epigenomic questions, reaffirming the importance of interdisciplinary research that brings together cutting-edge techniques in computer science with appropriate biological hypotheses and data. While questions and analysis must be carefully paired in an informed manner to produce meaningful, interpretable, and believable results in computational biology, our work here provides a sampling of the vast potential for scientific discovery at the intersection of the fields of computer science and biology.

Computational Genomics with R

Computational Genomics with R
Title Computational Genomics with R PDF eBook
Author Altuna Akalin
Publisher CRC Press
Pages 462
Release 2020-12-16
Genre Mathematics
ISBN 1498781861

Download Computational Genomics with R Book in PDF, Epub and Kindle

Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.