Computation for the Analysis of Designed Experiments
Title | Computation for the Analysis of Designed Experiments PDF eBook |
Author | Richard Heiberger |
Publisher | John Wiley & Sons |
Pages | 704 |
Release | 2015-02-06 |
Genre | Mathematics |
ISBN | 1119102871 |
Addresses the statistical, mathematical, and computational aspects of the construction of packages and analysis of variance (ANOVA) programs. Includes a disk at the back of the book that contains all program codes in four languages, APL, BASIC, C, and FORTRAN. Presents illustrations of the dual space geometry for all designs, including confounded designs.
Statistical Analysis of Designed Experiments
Title | Statistical Analysis of Designed Experiments PDF eBook |
Author | Helge Toutenburg |
Publisher | Springer Science & Business Media |
Pages | 507 |
Release | 2006-05-09 |
Genre | Mathematics |
ISBN | 0387227725 |
Unique in commencing with relatively simple statistical concepts and ideas found in most introductory statistical textbooks, this book goes on to cover more material useful for undergraduates and graduate in statistics and biostatistics.
A First Course in Design and Analysis of Experiments
Title | A First Course in Design and Analysis of Experiments PDF eBook |
Author | Gary W. Oehlert |
Publisher | W. H. Freeman |
Pages | 600 |
Release | 2000-01-19 |
Genre | Mathematics |
ISBN | 9780716735106 |
Oehlert's text is suitable for either a service course for non-statistics graduate students or for statistics majors. Unlike most texts for the one-term grad/upper level course on experimental design, Oehlert's new book offers a superb balance of both analysis and design, presenting three practical themes to students: • when to use various designs • how to analyze the results • how to recognize various design options Also, unlike other older texts, the book is fully oriented toward the use of statistical software in analyzing experiments.
The Design and Analysis of Computer Experiments
Title | The Design and Analysis of Computer Experiments PDF eBook |
Author | Thomas J. Santner |
Publisher | Springer |
Pages | 446 |
Release | 2019-01-08 |
Genre | Mathematics |
ISBN | 1493988476 |
This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners
Statistical Analysis of Designed Experiments
Title | Statistical Analysis of Designed Experiments PDF eBook |
Author | Ajit C. Tamhane |
Publisher | John Wiley & Sons |
Pages | 724 |
Release | 2012-09-12 |
Genre | Science |
ISBN | 1118491432 |
A indispensable guide to understanding and designing modern experiments The tools and techniques of Design of Experiments (DOE) allow researchers to successfully collect, analyze, and interpret data across a wide array of disciplines. Statistical Analysis of Designed Experiments provides a modern and balanced treatment of DOE methodology with thorough coverage of the underlying theory and standard designs of experiments, guiding the reader through applications to research in various fields such as engineering, medicine, business, and the social sciences. The book supplies a foundation for the subject, beginning with basic concepts of DOE and a review of elementary normal theory statistical methods. Subsequent chapters present a uniform, model-based approach to DOE. Each design is presented in a comprehensive format and is accompanied by a motivating example, discussion of the applicability of the design, and a model for its analysis using statistical methods such as graphical plots, analysis of variance (ANOVA), confidence intervals, and hypothesis tests. Numerous theoretical and applied exercises are provided in each chapter, and answers to selected exercises are included at the end of the book. An appendix features three case studies that illustrate the challenges often encountered in real-world experiments, such as randomization, unbalanced data, and outliers. Minitab® software is used to perform analyses throughout the book, and an accompanying FTP site houses additional exercises and data sets. With its breadth of real-world examples and accessible treatment of both theory and applications, Statistical Analysis of Designed Experiments is a valuable book for experimental design courses at the upper-undergraduate and graduate levels. It is also an indispensable reference for practicing statisticians, engineers, and scientists who would like to further their knowledge of DOE.
The Design of Experiments
Title | The Design of Experiments PDF eBook |
Author | Sir Ronald Aylmer Fisher |
Publisher | |
Pages | 248 |
Release | 1974 |
Genre | Statistics |
ISBN |
Understanding Statistics and Experimental Design
Title | Understanding Statistics and Experimental Design PDF eBook |
Author | Michael H. Herzog |
Publisher | Springer |
Pages | 146 |
Release | 2019-08-13 |
Genre | Science |
ISBN | 3030034992 |
This open access textbook provides the background needed to correctly use, interpret and understand statistics and statistical data in diverse settings. Part I makes key concepts in statistics readily clear. Parts I and II give an overview of the most common tests (t-test, ANOVA, correlations) and work out their statistical principles. Part III provides insight into meta-statistics (statistics of statistics) and demonstrates why experiments often do not replicate. Finally, the textbook shows how complex statistics can be avoided by using clever experimental design. Both non-scientists and students in Biology, Biomedicine and Engineering will benefit from the book by learning the statistical basis of scientific claims and by discovering ways to evaluate the quality of scientific reports in academic journals and news outlets.