Turing Computability
Title | Turing Computability PDF eBook |
Author | Robert I. Soare |
Publisher | Springer |
Pages | 289 |
Release | 2016-06-20 |
Genre | Computers |
ISBN | 3642319335 |
Turing's famous 1936 paper introduced a formal definition of a computing machine, a Turing machine. This model led to both the development of actual computers and to computability theory, the study of what machines can and cannot compute. This book presents classical computability theory from Turing and Post to current results and methods, and their use in studying the information content of algebraic structures, models, and their relation to Peano arithmetic. The author presents the subject as an art to be practiced, and an art in the aesthetic sense of inherent beauty which all mathematicians recognize in their subject. Part I gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic. Part II includes the study of computably open and closed sets of reals and basis and nonbasis theorems for effectively closed sets. Part III covers minimal Turing degrees. Part IV is an introduction to games and their use in proving theorems. Finally, Part V offers a short history of computability theory. The author has honed the content over decades according to feedback from students, lecturers, and researchers around the world. Most chapters include exercises, and the material is carefully structured according to importance and difficulty. The book is suitable for advanced undergraduate and graduate students in computer science and mathematics and researchers engaged with computability and mathematical logic.
Computability Theory and Its Applications
Title | Computability Theory and Its Applications PDF eBook |
Author | Peter Cholak |
Publisher | American Mathematical Soc. |
Pages | 338 |
Release | 2000 |
Genre | Mathematics |
ISBN | 0821819224 |
This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM 1999 Summer Conference on Computability Theory and Applications, which focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from "pure" computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).
Automata, Computability and Complexity
Title | Automata, Computability and Complexity PDF eBook |
Author | Elaine Rich |
Publisher | Prentice Hall |
Pages | 1120 |
Release | 2008 |
Genre | Computers |
ISBN | 0132288060 |
For upper level courses on Automata. Combining classic theory with unique applications, this crisp narrative is supported by abundant examples and clarifies key concepts by introducing important uses of techniques in real systems. Broad-ranging coverage allows instructors to easily customise course material to fit their unique requirements.
Algorithmic Randomness and Complexity
Title | Algorithmic Randomness and Complexity PDF eBook |
Author | Rodney G. Downey |
Publisher | Springer Science & Business Media |
Pages | 883 |
Release | 2010-10-29 |
Genre | Computers |
ISBN | 0387684417 |
Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.
Computability Theory
Title | Computability Theory PDF eBook |
Author | Rebecca Weber |
Publisher | American Mathematical Soc. |
Pages | 218 |
Release | 2012 |
Genre | Mathematics |
ISBN | 082187392X |
What can we compute--even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoretically? These questions are at the heart of computability theory. The goal of this book is to give the reader a firm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recursive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, examples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.
Handbook of Computability and Complexity in Analysis
Title | Handbook of Computability and Complexity in Analysis PDF eBook |
Author | Vasco Brattka |
Publisher | Springer Nature |
Pages | 427 |
Release | 2021-06-04 |
Genre | Computers |
ISBN | 3030592340 |
Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This handbook represents the first coherent cross-section through most active research topics on the more theoretical side of the field. It contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. All chapters are written by leading experts working at the cutting edge of the respective topic. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, and a wealth of information and references that will help them to navigate the modern research literature in this field.
Higher-Order Computability
Title | Higher-Order Computability PDF eBook |
Author | John Longley |
Publisher | Springer |
Pages | 587 |
Release | 2015-11-06 |
Genre | Computers |
ISBN | 3662479923 |
This book offers a self-contained exposition of the theory of computability in a higher-order context, where 'computable operations' may themselves be passed as arguments to other computable operations. The subject originated in the 1950s with the work of Kleene, Kreisel and others, and has since expanded in many different directions under the influence of workers from both mathematical logic and computer science. The ideas of higher-order computability have proved valuable both for elucidating the constructive content of logical systems, and for investigating the expressive power of various higher-order programming languages. In contrast to the well-known situation for first-order functions, it turns out that at higher types there are several different notions of computability competing for our attention, and each of these has given rise to its own strand of research. In this book, the authors offer an integrated treatment that draws together many of these strands within a unifying framework, revealing not only the range of possible computability concepts but the relationships between them. The book will serve as an ideal introduction to the field for beginning graduate students, as well as a reference for advanced researchers