Computability, Complexity, Logic

Computability, Complexity, Logic
Title Computability, Complexity, Logic PDF eBook
Author E. Börger
Publisher Elsevier
Pages 618
Release 1989-07-01
Genre Computers
ISBN 008088704X

Download Computability, Complexity, Logic Book in PDF, Epub and Kindle

The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems. The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes and classical aspects of these areas, the subject matter has been selected to give priority throughout to the new aspects of traditional questions, results and methods which have developed from the needs or knowledge of computer science and particularly of complexity theory. It is both a textbook for introductory courses in the above-mentioned disciplines as well as a monograph in which further results of new research are systematically presented and where an attempt is made to make explicit the connections and analogies between a variety of concepts and constructions.

Computability, Complexity, and Languages

Computability, Complexity, and Languages
Title Computability, Complexity, and Languages PDF eBook
Author Martin Davis
Publisher Academic Press
Pages 631
Release 1994-02-03
Genre Computers
ISBN 0122063821

Download Computability, Complexity, and Languages Book in PDF, Epub and Kindle

This introductory text covers the key areas of computer science, including recursive function theory, formal languages, and automata. Additions to the second edition include: extended exercise sets, which vary in difficulty; expanded section on recursion theory; new chapters on program verification and logic programming; updated references and examples throughout.

Computability and Complexity Theory

Computability and Complexity Theory
Title Computability and Complexity Theory PDF eBook
Author Steven Homer
Publisher Springer Science & Business Media
Pages 310
Release 2011-12-09
Genre Computers
ISBN 1461406811

Download Computability and Complexity Theory Book in PDF, Epub and Kindle

This revised and extensively expanded edition of Computability and Complexity Theory comprises essential materials that are core knowledge in the theory of computation. The book is self-contained, with a preliminary chapter describing key mathematical concepts and notations. Subsequent chapters move from the qualitative aspects of classical computability theory to the quantitative aspects of complexity theory. Dedicated chapters on undecidability, NP-completeness, and relative computability focus on the limitations of computability and the distinctions between feasible and intractable. Substantial new content in this edition includes: a chapter on nonuniformity studying Boolean circuits, advice classes and the important result of Karp─Lipton. a chapter studying properties of the fundamental probabilistic complexity classes a study of the alternating Turing machine and uniform circuit classes. an introduction of counting classes, proving the famous results of Valiant and Vazirani and of Toda a thorough treatment of the proof that IP is identical to PSPACE With its accessibility and well-devised organization, this text/reference is an excellent resource and guide for those looking to develop a solid grounding in the theory of computing. Beginning graduates, advanced undergraduates, and professionals involved in theoretical computer science, complexity theory, and computability will find the book an essential and practical learning tool. Topics and features: Concise, focused materials cover the most fundamental concepts and results in the field of modern complexity theory, including the theory of NP-completeness, NP-hardness, the polynomial hierarchy, and complete problems for other complexity classes Contains information that otherwise exists only in research literature and presents it in a unified, simplified manner Provides key mathematical background information, including sections on logic and number theory and algebra Supported by numerous exercises and supplementary problems for reinforcement and self-study purposes

Handbook of Computability and Complexity in Analysis

Handbook of Computability and Complexity in Analysis
Title Handbook of Computability and Complexity in Analysis PDF eBook
Author Vasco Brattka
Publisher
Pages 0
Release 2021
Genre
ISBN 9783030592356

Download Handbook of Computability and Complexity in Analysis Book in PDF, Epub and Kindle

Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays, this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades, computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This comprehensive handbook contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, as well as a wealth of information and references that will help them to navigate the modern research literature in this field. Vasco Brattka is a professor for Theoretical Computer Science and Mathematical Logic at the Universität der Bundeswehr München. He is editor-in-chief of Computability, the journal of the association, Computability in Europe. Peter Hertling is a professor in the Institute for Theoretical Computer Science, Mathematics and Operations Research at UniBwM. He is an associate editor of Journal of Complexity.

Handbook of Computability and Complexity in Analysis

Handbook of Computability and Complexity in Analysis
Title Handbook of Computability and Complexity in Analysis PDF eBook
Author Vasco Brattka
Publisher Springer Nature
Pages 427
Release 2021-06-04
Genre Computers
ISBN 3030592340

Download Handbook of Computability and Complexity in Analysis Book in PDF, Epub and Kindle

Computable analysis is the modern theory of computability and complexity in analysis that arose out of Turing's seminal work in the 1930s. This was motivated by questions such as: which real numbers and real number functions are computable, and which mathematical tasks in analysis can be solved by algorithmic means? Nowadays this theory has many different facets that embrace topics from computability theory, algorithmic randomness, computational complexity, dynamical systems, fractals, and analog computers, up to logic, descriptive set theory, constructivism, and reverse mathematics. In recent decades computable analysis has invaded many branches of analysis, and researchers have studied computability and complexity questions arising from real and complex analysis, functional analysis, and the theory of differential equations, up to (geometric) measure theory and topology. This handbook represents the first coherent cross-section through most active research topics on the more theoretical side of the field. It contains 11 chapters grouped into parts on computability in analysis; complexity, dynamics, and randomness; and constructivity, logic, and descriptive complexity. All chapters are written by leading experts working at the cutting edge of the respective topic. Researchers and graduate students in the areas of theoretical computer science and mathematical logic will find systematic introductions into many branches of computable analysis, and a wealth of information and references that will help them to navigate the modern research literature in this field.

Proofs and Algorithms

Proofs and Algorithms
Title Proofs and Algorithms PDF eBook
Author Gilles Dowek
Publisher Springer Science & Business Media
Pages 161
Release 2011-01-11
Genre Computers
ISBN 0857291211

Download Proofs and Algorithms Book in PDF, Epub and Kindle

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.

Logic and Complexity

Logic and Complexity
Title Logic and Complexity PDF eBook
Author Richard Lassaigne
Publisher Springer Science & Business Media
Pages 361
Release 2012-12-06
Genre Computers
ISBN 0857293923

Download Logic and Complexity Book in PDF, Epub and Kindle

Logic and Complexity looks at basic logic as it is used in Computer Science, and provides students with a logical approach to Complexity theory. With plenty of exercises, this book presents classical notions of mathematical logic, such as decidability, completeness and incompleteness, as well as new ideas brought by complexity theory such as NP-completeness, randomness and approximations, providing a better understanding for efficient algorithmic solutions to problems. Divided into three parts, it covers: - Model Theory and Recursive Functions - introducing the basic model theory of propositional, 1st order, inductive definitions and 2nd order logic. Recursive functions, Turing computability and decidability are also examined. - Descriptive Complexity - looking at the relationship between definitions of problems, queries, properties of programs and their computational complexity. - Approximation - explaining how some optimization problems and counting problems can be approximated according to their logical form. Logic is important in Computer Science, particularly for verification problems and database query languages such as SQL. Students and researchers in this field will find this book of great interest.