Comprehensive Guide on Organic and Inorganic Solar Cells

Comprehensive Guide on Organic and Inorganic Solar Cells
Title Comprehensive Guide on Organic and Inorganic Solar Cells PDF eBook
Author Md. Akhtaruzzaman
Publisher Academic Press
Pages 420
Release 2021-11-18
Genre Science
ISBN 0323858074

Download Comprehensive Guide on Organic and Inorganic Solar Cells Book in PDF, Epub and Kindle

Comprehensive Guide on Organic and Inorganic Solar Cells: Fundamental Concepts to Fabrication Methods is a one-stop, authoritative resource on all types of inorganic, organic and hybrid solar cells, including their theoretical background and the practical knowledge required for fabrication. With chapters rigorously dedicated to a particular type of solar cell, each subchapter takes a detailed look at synthesis recipes, deposition techniques, materials properties and their influence on solar cell performance, including advanced characterization methods with materials selection and experimental techniques. By addressing the evolution of solar cell technologies, second generation thin-film photovoltaics, organic solar cells, and finally, the latest hybrid organic-inorganic approaches, this book benefits students and researchers in solar cell technology to understand the similarities, differences, benefits and challenges of each device. Introduces the basic concepts of different photovoltaic cells to audiences from a wide variety of academic backgrounds Consists of working principles of a particular category of solar technology followed by dissection of every component within the architecture Crucial experimental procedures for the fabrication of solar cell devices are introduced, aiding picture practical application of the technology

Organic, Inorganic and Hybrid Solar Cells

Organic, Inorganic and Hybrid Solar Cells
Title Organic, Inorganic and Hybrid Solar Cells PDF eBook
Author Ching-Fuh Lin
Publisher John Wiley & Sons
Pages 278
Release 2012-09-04
Genre Technology & Engineering
ISBN 1118168534

Download Organic, Inorganic and Hybrid Solar Cells Book in PDF, Epub and Kindle

Provides detailed descriptions of organic, inorganic, and hybrid solar cells and the latest developments in the quest to produce low-cost, long-lasting solar cells What will it take to transform solar energy from an important alternative source to a truly competitive and, perhaps, dominant one? Lower cost and longer life. Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice provides in-depth information on the three types of existing solar cells, giving readers a good foundation for evaluating the technologies with the most potential for competing with energy from fossil fuels. Featuring a Foreword written by Nobel Peace Prize co-winner Dr. Woodrow W. Clark, this timely and comprehensive guide: Focuses on the realization of low-cost and long-life solar cells study and applications Reviews the properties of inorganic materials, primarily semiconductors Explores the electrical and optical properties of organic materials Discusses the interfacing of organic and inorganic materials: compatibility of deposition, the adhesion problem, formation of surface states, and band-level realignment Provides a detailed description of organic-inorganic hybrid solar cells, from the basic principles to practical devices Introduces a sandwiched structure for hybrid solar cells, which combines a far lower production cost than inorganic solar cells while stabilizing and extending the life of organic material far beyond that of organic solar cells Organic, Inorganic, and Hybrid Solar Cells: Principles and Practice is a first-rate professional reference for electrical engineers and important supplemental reading for graduate students in related areas of study.

Perovskite Photovoltaics

Perovskite Photovoltaics
Title Perovskite Photovoltaics PDF eBook
Author Aparna Thankappan
Publisher Academic Press
Pages 521
Release 2018-06-29
Genre Technology & Engineering
ISBN 0128129166

Download Perovskite Photovoltaics Book in PDF, Epub and Kindle

Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells

Multifunctional Organic–Inorganic Halide Perovskite

Multifunctional Organic–Inorganic Halide Perovskite
Title Multifunctional Organic–Inorganic Halide Perovskite PDF eBook
Author Nam-Gyu Park
Publisher CRC Press
Pages 240
Release 2022-03-10
Genre Science
ISBN 1000562271

Download Multifunctional Organic–Inorganic Halide Perovskite Book in PDF, Epub and Kindle

Perovskite is a well-known structure with the chemical formula ABX3, where A and B are cations coordinated with 12 and 6 anions, respectively, and X is an anion. When a halogen anion is used, the monovalent A and divalent B cations can be stabilized with respect to a tolerance factor ranging from ~0.8 to 1. Since the first report on ~10% efficiency and long-term stability of solid-state perovskite solar cells (PSCs) in 2012 and two subsequent seed reports on perovskite-sensitized solar cells in 2009 and 2011, PSCs have received increasing attention. The power conversion efficiency of PSCs was certified to be more than 25% in 2020, surpassing thin-film solar cell technologies. Methylammonium or formamidinium organic ion–based lead iodide perovskite has been used for high-efficiency PSCs. The first report on solid-state PSCs triggered perovskite photovoltaics, leading to more than 23,000 publications as of October 2021. In addition, halide perovskite has shown excellent performance when applied to light-emitting diodes (LEDs), photodetectors, and resistive memory, indicating that halide perovskite is multifunctional. This book explains the electro-optical and ferroelectric properties of perovskite and details the recent progress in scalable and tandem PSCs as well as perovskite LEDs and resistive memory. It is a useful textbook and self-help study guide for advanced undergraduate- and graduate-level students of materials science and engineering, chemistry, chemical engineering, and nanotechnology; for researchers in photovoltaics, LEDs, resistive memory, and perovskite-related opto-electronics; and for general readers who wish to gain knowledge about halide perovskite.

Advanced Concepts in Photovoltaics

Advanced Concepts in Photovoltaics
Title Advanced Concepts in Photovoltaics PDF eBook
Author Arthur J. Nozik
Publisher Royal Society of Chemistry
Pages 631
Release 2014-07-10
Genre Science
ISBN 1849739951

Download Advanced Concepts in Photovoltaics Book in PDF, Epub and Kindle

Photovoltaic systems enable the sun’s energy to be converted directly into electricity using semiconductor solar cells. The ultimate goal of photovoltaic research and development is to reduce the cost of solar power to reach or even become lower than the cost of electricity generated from fossil and nuclear fuels. The power conversion efficiency and the cost per unit area of the phototvoltaic system are critical factors that determine the cost of photovoltaic electricity. Until recently, the power conversion efficiency of single-junction photovoltaic cells has been limited to approximately 33% - the so-called Shockley-Queisser limit. This book presents the latest developments in photovoltaics which seek to either reach or surpass the Shockley-Queisser limit, and to lower the cell cost per unit area. Progress toward this ultimate goal is presented for the three generations of photovoltaic cells: the 1st generation based on crystalline silicon semiconductors; the 2nd generation based on thin film silicon, compound semiconductors, amorphous silicon, and various mesoscopic structures; and the 3rd generation based on the unique properties of nanoscale materials, new inorganic and organic photoconversion materials, highly efficient multi-junction cells with low cost solar concentration, and novel photovoltaic processes. The extent to which photovoltaic materials and processes can meet the expectations of efficient and cost effective solar energy conversion to electricity is discussed. Written by an international team of expert contributors, and with researchers in academia, national research laboratories, and industry in mind, this book is a comprehensive guide to recent progress in photovoltaics and essential for any library or laboratory in the field.

A Comprehensive Guide to Solar Energy Systems

A Comprehensive Guide to Solar Energy Systems
Title A Comprehensive Guide to Solar Energy Systems PDF eBook
Author Trevor Letcher
Publisher Academic Press
Pages 542
Release 2018-05-17
Genre Science
ISBN 0128114800

Download A Comprehensive Guide to Solar Energy Systems Book in PDF, Epub and Kindle

A Comprehensive Guide to Solar Energy Systems: With Special Focus on Photovoltaic Systems, the most advanced and research focused text on all aspects of solar energy engineering, is a must have edition on the present state of solar technology, integration and worldwide distribution. In addition, the book provides a high-level assessment of the growth trends in photovoltaics and how investment, planning and economic infrastructure can support those innovations. Each chapter includes a research overview with a detailed analysis and new case studies that look at how recent research developments can be applied. Written by some of the most forward-thinking professionals, this book is an invaluable reference for engineers. - Contains analysis of the latest high-level research and explores real world application potential in relation to developments - Uses system international (SI) units and imperial units throughout to appeal to global engineers - Offers measurable data written by a world expert in the field on the latest developments in this fast moving and vital subject

Solar Energy Capture Materials

Solar Energy Capture Materials
Title Solar Energy Capture Materials PDF eBook
Author Elizabeth A Gibson
Publisher Royal Society of Chemistry
Pages 221
Release 2019-08-19
Genre Technology & Engineering
ISBN 1788018508

Download Solar Energy Capture Materials Book in PDF, Epub and Kindle

Energy is an important area of contemporary research, with clear societal benefits. It is a fast-developing and application-driven research area, with chemistry leading the discovery of new solids, which are then studied by physicists and materials scientists. Solar Energy Capture Materials introduces a range of the different inorganic materials used, with an emphasis on how solid-state chemistry allows development of new functional solids for energy applications. Dedicated chapters cover silicon-based photovoltaic devices, compound semiconductor-based solar cells, dye-sensitized solar cells (DSC), solution processed solar cells and emerging materials. Edited and written by world-renowned scientists, this book will provide a comprehensive introduction for advanced undergraduates, postgraduates and researchers wishing to learn about the topic.