Compound Renewal Processes
Title | Compound Renewal Processes PDF eBook |
Author | A. A. Borovkov |
Publisher | Cambridge University Press |
Pages | |
Release | 2022-06-30 |
Genre | Mathematics |
ISBN | 100911560X |
Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
Stochastic Processes in Science, Engineering and Finance
Title | Stochastic Processes in Science, Engineering and Finance PDF eBook |
Author | Frank Beichelt |
Publisher | CRC Press |
Pages | 438 |
Release | 2006-02-22 |
Genre | Mathematics |
ISBN | 9781420010459 |
This book presents a self-contained introduction to stochastic processes with emphasis on their applications in science, engineering, finance, computer science, and operations research. It provides theoretical foundations for modeling time-dependent random phenomena in these areas and illustrates their application by analyzing numerous practical examples. The treatment assumes few prerequisites, requiring only the standard mathematical maturity acquired by undergraduate applied science students. It includes an introductory chapter that summarizes the basic probability theory needed as background. Numerous exercises reinforce the concepts and techniques discussed and allow readers to assess their grasp of the subject. Solutions to most of the exercises are provided in an appendix. While focused primarily on practical aspects, the presentation includes some important proofs along with more challenging examples and exercises for those more theoretically inclined. Mastering the contents of this book prepares readers to apply stochastic modeling in their own fields and enables them to work more creatively with software designed for dealing with the data analysis aspects of stochastic processes.
Ruin Probabilities
Title | Ruin Probabilities PDF eBook |
Author | S?ren Asmussen |
Publisher | World Scientific |
Pages | 621 |
Release | 2010 |
Genre | Mathematics |
ISBN | 9814282529 |
The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramr?Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber?Shiu functions and dependence.
Essentials of Stochastic Processes
Title | Essentials of Stochastic Processes PDF eBook |
Author | Richard Durrett |
Publisher | Springer |
Pages | 282 |
Release | 2016-11-07 |
Genre | Mathematics |
ISBN | 3319456148 |
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
asymptotic analysis of random walks
Title | asymptotic analysis of random walks PDF eBook |
Author | Aleksandr Alekseevich Borovkov |
Publisher | Cambridge University Press |
Pages | 655 |
Release | 2008 |
Genre | Asymptotic expansions |
ISBN |
A comprehensive monograph presenting a unified systematic exposition of the large deviations theory for heavy-tailed random walks.
Mixed Poisson Processes
Title | Mixed Poisson Processes PDF eBook |
Author | J Grandell |
Publisher | CRC Press |
Pages | 288 |
Release | 1997-05-01 |
Genre | Mathematics |
ISBN | 9780412787003 |
To date, Mixed Poisson processes have been studied by scientists primarily interested in either insurance mathematics or point processes. Work in one area has often been carried out without knowledge of the other area. Mixed Poisson Processes is the first book to combine and concentrate on these two themes, and to distinguish between the notions of distributions and processes. The first part of the text gives special emphasis to the estimation of the underlying intensity, thinning, infinite divisibility, and reliability properties. The second part is, to a greater extent, based on Lundberg's thesis.
Lundberg Approximations for Compound Distributions with Insurance Applications
Title | Lundberg Approximations for Compound Distributions with Insurance Applications PDF eBook |
Author | Gordon E. Willmot |
Publisher | Springer Science & Business Media |
Pages | 268 |
Release | 2001 |
Genre | Business & Economics |
ISBN | 9780387951355 |
This monograph discusses Lundberg approximations for compound distributions with special emphasis on applications in insurance risk modeling. These distributions are somewhat awkward from an analytic standpoint, but play a central role in insurance and other areas of applied probability modeling such as queueing theory. Consequently, the material is of interest to researchers and graduate students interested in these areas. The material is self-contained, but an introductory course in insurance risk theory is beneficial to prospective readers. Lundberg asymptotics and bounds have a long history in connection with ruin probabilities and waiting time distributions in queueing theory, and have more recently been extended to compound distributions. This connection has its roots in the compound geometric representation of the ruin probabilities and waiting time distributions. A systematic treatment of these approximations is provided, drawing heavily on monotonicity ideas from reliability theory. The results are then applied to the solution of defective renewal equations, analysis of the time and severity of insurance ruin, and renewal risk models, which may also be viewed in terms of the equilibrium waiting time distribution in the G/G/1 queue. Many known results are derived and extended so that much of the material has not appeared elsewhere in the literature. A unique feature involves the use of elementary analytic techniques which require only undergraduate mathematics as a prerequisite. New proofs of many results are given, and an extensive bibliography is provided. Gordon Willmot is Professor of Statistics and Actuarial Science at the University of Waterloo. His research interests are in insurance risk and queueing theory. He is an associate editor of the North American Actuarial Journal.