Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics

Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics
Title Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics PDF eBook
Author Vincent Guedj
Publisher Springer Science & Business Media
Pages 315
Release 2012-01-06
Genre Mathematics
ISBN 3642236685

Download Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics Book in PDF, Epub and Kindle

The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary). These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson). Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.

Complex Geometry and Dynamics

Complex Geometry and Dynamics
Title Complex Geometry and Dynamics PDF eBook
Author John Erik Fornæss
Publisher Springer
Pages 316
Release 2015-11-05
Genre Mathematics
ISBN 3319203371

Download Complex Geometry and Dynamics Book in PDF, Epub and Kindle

This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.

Issues in General and Specialized Mathematics Research: 2011 Edition

Issues in General and Specialized Mathematics Research: 2011 Edition
Title Issues in General and Specialized Mathematics Research: 2011 Edition PDF eBook
Author
Publisher ScholarlyEditions
Pages 864
Release 2012-01-09
Genre Mathematics
ISBN 1464964939

Download Issues in General and Specialized Mathematics Research: 2011 Edition Book in PDF, Epub and Kindle

Issues in General and Specialized Mathematics Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General and Specialized Mathematics Research. The editors have built Issues in General and Specialized Mathematics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General and Specialized Mathematics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition
Title Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition PDF eBook
Author
Publisher ScholarlyEditions
Pages 1187
Release 2013-05-01
Genre Mathematics
ISBN 1490110119

Download Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition Book in PDF, Epub and Kindle

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Random Structures and Algorithms. The editors have built Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Random Structures and Algorithms in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Algebraic and Analytic Microlocal Analysis

Algebraic and Analytic Microlocal Analysis
Title Algebraic and Analytic Microlocal Analysis PDF eBook
Author Michael Hitrik
Publisher Springer
Pages 660
Release 2018-12-19
Genre Mathematics
ISBN 3030015882

Download Algebraic and Analytic Microlocal Analysis Book in PDF, Epub and Kindle

This book presents contributions from two workshops in algebraic and analytic microlocal analysis that took place in 2012 and 2013 at Northwestern University. Featured papers expand on mini-courses and talks ranging from foundational material to advanced research-level papers, and new applications in symplectic geometry, mathematical physics, partial differential equations, and complex analysis are discussed in detail. Topics include Procesi bundles and symplectic reflection algebras, microlocal condition for non-displaceability, polarized complex manifolds, nodal sets of Laplace eigenfunctions, geodesics in the space of Kӓhler metrics, and partial Bergman kernels. This volume is a valuable resource for graduate students and researchers in mathematics interested in understanding microlocal analysis and learning about recent research in the area.

An Introduction to Extremal Kahler Metrics

An Introduction to Extremal Kahler Metrics
Title An Introduction to Extremal Kahler Metrics PDF eBook
Author Gábor Székelyhidi
Publisher American Mathematical Soc.
Pages 210
Release 2014-06-19
Genre Mathematics
ISBN 1470410478

Download An Introduction to Extremal Kahler Metrics Book in PDF, Epub and Kindle

A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.

An Introduction to the Kähler-Ricci Flow

An Introduction to the Kähler-Ricci Flow
Title An Introduction to the Kähler-Ricci Flow PDF eBook
Author Sebastien Boucksom
Publisher Springer
Pages 342
Release 2013-10-02
Genre Mathematics
ISBN 3319008196

Download An Introduction to the Kähler-Ricci Flow Book in PDF, Epub and Kindle

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.