Complex Manifolds without Potential Theory

Complex Manifolds without Potential Theory
Title Complex Manifolds without Potential Theory PDF eBook
Author Shiing-shen Chern
Publisher Springer Science & Business Media
Pages 158
Release 2013-06-29
Genre Mathematics
ISBN 1468493442

Download Complex Manifolds without Potential Theory Book in PDF, Epub and Kindle

From the reviews of the second edition: "The new methods of complex manifold theory are very useful tools for investigations in algebraic geometry, complex function theory, differential operators and so on. The differential geometrical methods of this theory were developed essentially under the influence of Professor S.-S. Chern's works. The present book is a second edition... It can serve as an introduction to, and a survey of, this theory and is based on the author's lectures held at the University of California and at a summer seminar of the Canadian Mathematical Congress.... The text is illustrated by many examples... The book is warmly recommended to everyone interested in complex differential geometry." #Acta Scientiarum Mathematicarum, 41, 3-4#

Complex Manifolds Without Potential Theory

Complex Manifolds Without Potential Theory
Title Complex Manifolds Without Potential Theory PDF eBook
Author Shiing-Shen Chern
Publisher
Pages 164
Release 2014-01-15
Genre
ISBN 9781468493450

Download Complex Manifolds Without Potential Theory Book in PDF, Epub and Kindle

Complex Geometry

Complex Geometry
Title Complex Geometry PDF eBook
Author Daniel Huybrechts
Publisher Springer Science & Business Media
Pages 336
Release 2005
Genre Computers
ISBN 9783540212904

Download Complex Geometry Book in PDF, Epub and Kindle

Easily accessible Includes recent developments Assumes very little knowledge of differentiable manifolds and functional analysis Particular emphasis on topics related to mirror symmetry (SUSY, Kaehler-Einstein metrics, Tian-Todorov lemma)

Complex Manifolds Without Potential Theory (with Appendix on the Geometry of Characteristics Classes)

Complex Manifolds Without Potential Theory (with Appendix on the Geometry of Characteristics Classes)
Title Complex Manifolds Without Potential Theory (with Appendix on the Geometry of Characteristics Classes) PDF eBook
Author Shiing-Shen Chern
Publisher
Pages
Release 1979
Genre
ISBN

Download Complex Manifolds Without Potential Theory (with Appendix on the Geometry of Characteristics Classes) Book in PDF, Epub and Kindle

Complex Potential Theory

Complex Potential Theory
Title Complex Potential Theory PDF eBook
Author Paul M. Gauthier
Publisher Springer Science & Business Media
Pages 565
Release 2012-12-06
Genre Mathematics
ISBN 9401109346

Download Complex Potential Theory Book in PDF, Epub and Kindle

Proceedings of the NATO Advanced Study Institute and Séminaire de mathématiques supérieures, Montréal, Canada, July 26--August 6, 1993

Introduction to Topological Manifolds

Introduction to Topological Manifolds
Title Introduction to Topological Manifolds PDF eBook
Author John M. Lee
Publisher Springer Science & Business Media
Pages 395
Release 2006-04-06
Genre Mathematics
ISBN 038722727X

Download Introduction to Topological Manifolds Book in PDF, Epub and Kindle

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.

Characteristic Classes

Characteristic Classes
Title Characteristic Classes PDF eBook
Author John Willard Milnor
Publisher Princeton University Press
Pages 342
Release 1974
Genre Mathematics
ISBN 9780691081229

Download Characteristic Classes Book in PDF, Epub and Kindle

The theory of characteristic classes provides a meeting ground for the various disciplines of differential topology, differential and algebraic geometry, cohomology, and fiber bundle theory. As such, it is a fundamental and an essential tool in the study of differentiable manifolds. In this volume, the authors provide a thorough introduction to characteristic classes, with detailed studies of Stiefel-Whitney classes, Chern classes, Pontrjagin classes, and the Euler class. Three appendices cover the basics of cohomology theory and the differential forms approach to characteristic classes, and provide an account of Bernoulli numbers. Based on lecture notes of John Milnor, which first appeared at Princeton University in 1957 and have been widely studied by graduate students of topology ever since, this published version has been completely revised and corrected.