Complex Geometry and Dynamics
Title | Complex Geometry and Dynamics PDF eBook |
Author | John Erik Fornæss |
Publisher | Springer |
Pages | 316 |
Release | 2015-11-05 |
Genre | Mathematics |
ISBN | 3319203371 |
This book focuses on complex geometry and covers highly active topics centered around geometric problems in several complex variables and complex dynamics, written by some of the world’s leading experts in their respective fields. This book features research and expository contributions from the 2013 Abel Symposium, held at the Norwegian University of Science and Technology Trondheim on July 2-5, 2013. The purpose of the symposium was to present the state of the art on the topics, and to discuss future research directions.
Geometry from Dynamics, Classical and Quantum
Title | Geometry from Dynamics, Classical and Quantum PDF eBook |
Author | José F. Cariñena |
Publisher | Springer |
Pages | 739 |
Release | 2014-09-23 |
Genre | Science |
ISBN | 9401792208 |
This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system). The book departs from the principle that ''dynamics is first'' and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics. Finally, it is shown that further properties that allow the explicit description of the dynamics of certain dynamical systems, like integrability and super integrability, are deeply related to the previous development and will be covered in the last part of the book. The mathematical framework used to present the previous program is kept to an elementary level throughout the text, indicating where more advanced notions will be needed to proceed further. A family of relevant examples is discussed at length and the necessary ideas from geometry are elaborated along the text. However no effort is made to present an ''all-inclusive'' introduction to differential geometry as many other books already exist on the market doing exactly that. However, the development of the previous program, considered as the posing and solution of a generalized inverse problem for geometry, leads to new ways of thinking and relating some of the most conspicuous geometrical structures appearing in Mathematical and Theoretical Physics.
Complex Dynamics
Title | Complex Dynamics PDF eBook |
Author | Lennart Carleson |
Publisher | Springer Science & Business Media |
Pages | 181 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 1461243645 |
A discussion of the properties of conformal mappings in the complex plane, closely related to the study of fractals and chaos. Indeed, the book ends in a detailed study of the famous Mandelbrot set, which describes very general properties of such mappings. Focusing on the analytic side of this contemporary subject, the text was developed from a course taught over several semesters and aims to help students and instructors to familiarize themselves with complex dynamics. Topics covered include: conformal and quasi-conformal mappings, fixed points and conjugations, basic rational iteration, classification of periodic components, critical points and expanding maps, some applications of conformal mappings, the local geometry of the Fatou set, and quadratic polynomials and the Mandelbrot set.
Complex Dynamics and Geometry
Title | Complex Dynamics and Geometry PDF eBook |
Author | Dominique Cerveau |
Publisher | American Mathematical Soc. |
Pages | 212 |
Release | 2003 |
Genre | Mathematics |
ISBN | 9780821832288 |
In the last twenty years, the theory of holomorphic dynamical systems has had a resurgence of activity, particularly concerning the fine analysis of Julia sets associated with polynomials and rational maps in one complex variable. At the same time, closely related theories have had a similar rapid development, for example the qualitative theory of differential equations in the complex domain. The meeting, ``Etat de la recherche'', held at Ecole Normale Superieure de Lyon, presented the current state of the art in this area, emphasizing the unity linking the various sub-domains. This volume contains four survey articles corresponding to the talks presented at this meeting. D. Cerveau describes the structure of polynomial differential equations in the complex plane, focusing on the local analysis in neighborhoods of singular points. E. Ghys surveys the theory of laminations by Riemann surfaces which occur in many dynamical or geometrical situations. N. Sibony describes the present state of the generalization of the Fatou-Julia theory for polynomial or rational maps in two or more complex dimensions. Lastly, the talk by J.-C. Yoccoz, written by M. Flexor, considers polynomials of degree $2$ in one complex variable, and in particular, with the hyperbolic properties of these polynomials centered around the Jakobson theorem. This is a general introduction that gives a basic history of holomorphic dynamical systems, demonstrating the numerous and fruitful interactions among the topics. In the spirit of the ``Etat de la recherche de la SMF'' meetings, the articles are written for a broad mathematical audience, especially students or mathematicians working in different fields. This book is translated from the French edition by Leslie Kay.
Dynamics in One Complex Variable
Title | Dynamics in One Complex Variable PDF eBook |
Author | John Milnor |
Publisher | Princeton University Press |
Pages | 313 |
Release | 2011-02-11 |
Genre | Mathematics |
ISBN | 1400835534 |
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.
Dynamical Systems in Neuroscience
Title | Dynamical Systems in Neuroscience PDF eBook |
Author | Eugene M. Izhikevich |
Publisher | MIT Press |
Pages | 459 |
Release | 2010-01-22 |
Genre | Medical |
ISBN | 0262514206 |
Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Frontiers in Complex Dynamics
Title | Frontiers in Complex Dynamics PDF eBook |
Author | Araceli Bonifant |
Publisher | Princeton University Press |
Pages | 799 |
Release | 2014-03-16 |
Genre | Mathematics |
ISBN | 0691159297 |
John Milnor, best known for his work in differential topology, K-theory, and dynamical systems, is one of only three mathematicians to have won the Fields medal, the Abel prize, and the Wolf prize, and is the only one to have received all three of the Leroy P. Steele prizes. In honor of his eightieth birthday, this book gathers together surveys and papers inspired by Milnor's work, from distinguished experts examining not only holomorphic dynamics in one and several variables, but also differential geometry, entropy theory, and combinatorial group theory. The book contains the last paper written by William Thurston, as well as a short paper by John Milnor himself. Introductory sections put the papers in mathematical and historical perspective, color figures are included, and an index facilitates browsing. This collection will be useful to students and researchers for decades to come. The contributors are Marco Abate, Marco Arizzi, Alexander Blokh, Thierry Bousch, Xavier Buff, Serge Cantat, Tao Chen, Robert Devaney, Alexandre Dezotti, Tien-Cuong Dinh, Romain Dujardin, Hugo García-Compeán, William Goldman, Rotislav Grigorchuk, John Hubbard, Yunping Jiang, Linda Keen, Jan Kiwi, Genadi Levin, Daniel Meyer, John Milnor, Carlos Moreira, Vincente Muñoz, Viet-Anh Nguyên, Lex Oversteegen, Ricardo Pérez-Marco, Ross Ptacek, Jasmin Raissy, Pascale Roesch, Roberto Santos-Silva, Dierk Schleicher, Nessim Sibony, Daniel Smania, Tan Lei, William Thurston, Vladlen Timorin, Sebastian van Strien, and Alberto Verjovsky.