Complex Data Modeling and Computationally Intensive Statistical Methods
Title | Complex Data Modeling and Computationally Intensive Statistical Methods PDF eBook |
Author | Pietro Mantovan |
Publisher | Springer Science & Business Media |
Pages | 170 |
Release | 2011-01-27 |
Genre | Computers |
ISBN | 8847013860 |
Selected from the conference "S.Co.2009: Complex Data Modeling and Computationally Intensive Methods for Estimation and Prediction," these 20 papers cover the latest in statistical methods and computational techniques for complex and high dimensional datasets.
Complex Data Modeling and Computationally Intensive Statistical Methods
Title | Complex Data Modeling and Computationally Intensive Statistical Methods PDF eBook |
Author | |
Publisher | |
Pages | 176 |
Release | 2011-08-14 |
Genre | |
ISBN | 9788847013926 |
S. Co. 2009. Sixth Conference. Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction
Title | S. Co. 2009. Sixth Conference. Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction PDF eBook |
Author | |
Publisher | Maggioli Editore |
Pages | 493 |
Release | 2009 |
Genre | Business & Economics |
ISBN | 8838743851 |
Advances in Complex Data Modeling and Computational Methods in Statistics
Title | Advances in Complex Data Modeling and Computational Methods in Statistics PDF eBook |
Author | Anna Maria Paganoni |
Publisher | Springer |
Pages | 210 |
Release | 2014-11-04 |
Genre | Mathematics |
ISBN | 3319111493 |
The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.
Complex Models and Computational Methods in Statistics
Title | Complex Models and Computational Methods in Statistics PDF eBook |
Author | Matteo Grigoletto |
Publisher | Springer Science & Business Media |
Pages | 228 |
Release | 2013-01-26 |
Genre | Mathematics |
ISBN | 884702871X |
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.
Statistical Methods and Modeling of Seismogenesis
Title | Statistical Methods and Modeling of Seismogenesis PDF eBook |
Author | Nikolaos Limnios |
Publisher | John Wiley & Sons |
Pages | 336 |
Release | 2021-03-31 |
Genre | Social Science |
ISBN | 1119825032 |
The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.
Statistical Models for Data Analysis
Title | Statistical Models for Data Analysis PDF eBook |
Author | Paolo Giudici |
Publisher | Springer Science & Business Media |
Pages | 413 |
Release | 2013-07-01 |
Genre | Mathematics |
ISBN | 3319000322 |
The papers in this book cover issues related to the development of novel statistical models for the analysis of data. They offer solutions for relevant problems in statistical data analysis and contain the explicit derivation of the proposed models as well as their implementation. The book assembles the selected and refereed proceedings of the biannual conference of the Italian Classification and Data Analysis Group (CLADAG), a section of the Italian Statistical Society.