Comparison Finsler Geometry

Comparison Finsler Geometry
Title Comparison Finsler Geometry PDF eBook
Author Shin-ichi Ohta
Publisher Springer Nature
Pages 324
Release 2021-10-09
Genre Mathematics
ISBN 3030806502

Download Comparison Finsler Geometry Book in PDF, Epub and Kindle

This monograph presents recent developments in comparison geometry and geometric analysis on Finsler manifolds. Generalizing the weighted Ricci curvature into the Finsler setting, the author systematically derives the fundamental geometric and analytic inequalities in the Finsler context. Relying only upon knowledge of differentiable manifolds, this treatment offers an accessible entry point to Finsler geometry for readers new to the area. Divided into three parts, the book begins by establishing the fundamentals of Finsler geometry, including Jacobi fields and curvature tensors, variation formulas for arc length, and some classical comparison theorems. Part II goes on to introduce the weighted Ricci curvature, nonlinear Laplacian, and nonlinear heat flow on Finsler manifolds. These tools allow the derivation of the Bochner–Weitzenböck formula and the corresponding Bochner inequality, gradient estimates, Bakry–Ledoux’s Gaussian isoperimetric inequality, and functional inequalities in the Finsler setting. Part III comprises advanced topics: a generalization of the classical Cheeger–Gromoll splitting theorem, the curvature-dimension condition, and the needle decomposition. Throughout, geometric descriptions illuminate the intuition behind the results, while exercises provide opportunities for active engagement. Comparison Finsler Geometry offers an ideal gateway to the study of Finsler manifolds for graduate students and researchers. Knowledge of differentiable manifold theory is assumed, along with the fundamentals of functional analysis. Familiarity with Riemannian geometry is not required, though readers with a background in the area will find their insights are readily transferrable.

An Introduction to Riemann-Finsler Geometry

An Introduction to Riemann-Finsler Geometry
Title An Introduction to Riemann-Finsler Geometry PDF eBook
Author D. Bao
Publisher Springer Science & Business Media
Pages 453
Release 2012-12-06
Genre Mathematics
ISBN 1461212685

Download An Introduction to Riemann-Finsler Geometry Book in PDF, Epub and Kindle

This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. "This book offers the most modern treatment of the topic ..." EMS Newsletter.

Lectures On Finsler Geometry

Lectures On Finsler Geometry
Title Lectures On Finsler Geometry PDF eBook
Author Zhongmin Shen
Publisher World Scientific
Pages 323
Release 2001-05-22
Genre Mathematics
ISBN 9814491659

Download Lectures On Finsler Geometry Book in PDF, Epub and Kindle

In 1854, B Riemann introduced the notion of curvature for spaces with a family of inner products. There was no significant progress in the general case until 1918, when P Finsler studied the variation problem in regular metric spaces. Around 1926, L Berwald extended Riemann's notion of curvature to regular metric spaces and introduced an important non-Riemannian curvature using his connection for regular metrics. Since then, Finsler geometry has developed steadily. In his Paris address in 1900, D Hilbert formulated 23 problems, the 4th and 23rd problems being in Finsler's category. Finsler geometry has broader applications in many areas of science and will continue to develop through the efforts of many geometers around the world.Usually, the methods employed in Finsler geometry involve very complicated tensor computations. Sometimes this discourages beginners. Viewing Finsler spaces as regular metric spaces, the author discusses the problems from the modern metric geometry point of view. The book begins with the basics on Finsler spaces, including the notions of geodesics and curvatures, then deals with basic comparison theorems on metrics and measures and their applications to the Levy concentration theory of regular metric measure spaces and Gromov's Hausdorff convergence theory.

Introduction To Modern Finsler Geometry

Introduction To Modern Finsler Geometry
Title Introduction To Modern Finsler Geometry PDF eBook
Author Yi-bing Shen
Publisher World Scientific Publishing Company
Pages 406
Release 2016-02-25
Genre Mathematics
ISBN 981470492X

Download Introduction To Modern Finsler Geometry Book in PDF, Epub and Kindle

This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.

Introduction to Modern Finsler Geometry

Introduction to Modern Finsler Geometry
Title Introduction to Modern Finsler Geometry PDF eBook
Author Yibing Shen
Publisher World Scientific Publishing Company
Pages 393
Release 2016
Genre Mathematics
ISBN 9789814704908

Download Introduction to Modern Finsler Geometry Book in PDF, Epub and Kindle

This comprehensive book is an introduction to the basics of Finsler geometry with recent developments in its area. It includes local geometry as well as global geometry of Finsler manifolds.In Part I, the authors discuss differential manifolds, Finsler metrics, the Chern connection, Riemannian and non-Riemannian quantities. Part II is written for readers who would like to further their studies in Finsler geometry. It covers projective transformations, comparison theorems, fundamental group, minimal immersions, harmonic maps, Einstein metrics, conformal transformations, amongst other related topics. The authors made great efforts to ensure that the contents are accessible to senior undergraduate students, graduate students, mathematicians and scientists.

Riemann-Finsler Geometry

Riemann-Finsler Geometry
Title Riemann-Finsler Geometry PDF eBook
Author Shiing-Shen Chern
Publisher World Scientific
Pages 206
Release 2005
Genre Mathematics
ISBN 9812383573

Download Riemann-Finsler Geometry Book in PDF, Epub and Kindle

Riemann-Finsler geometry is a subject that concerns manifolds with Finsler metrics, including Riemannian metrics. It has applications in many fields of the natural sciences. Curvature is the central concept in Riemann-Finsler geometry. This invaluable textbook presents detailed discussions on important curvatures such the Cartan torsion, the S-curvature, the Landsberg curvature and the Riemann curvature. It also deals with Finsler metrics with special curvature or geodesic properties, such as projectively flat Finsler metrics, Berwald metrics, Finsler metrics of scalar curvature or isotropic S-curvature, etc. Instructive examples are given in abundance, for further description of some important geometric concepts. The text includes the most recent results, although many of the problems discussed are classical. Graduate students and researchers in differential geometry.

Minkowski Geometry

Minkowski Geometry
Title Minkowski Geometry PDF eBook
Author Anthony C. Thompson
Publisher Cambridge University Press
Pages 380
Release 1996-06-28
Genre Mathematics
ISBN 9780521404723

Download Minkowski Geometry Book in PDF, Epub and Kindle

The first comprehensive treatment of Minkowski geometry since the 1940's