Cambridge IGCSE Computer Science
Title | Cambridge IGCSE Computer Science PDF eBook |
Author | David Watson |
Publisher | Hodder Education |
Pages | 257 |
Release | 2015-01-30 |
Genre | Computers |
ISBN | 1471809323 |
Endorsed by Cambridge Assessment International Education. Develop computational thinking and programming skills with complete coverage of the latest syllabus from experienced examiners and teachers. - Follows the order of the syllabus exactly, ensuring complete coverage - Introduces students to self-learning exercises, helping them learn how to use their knowledge in new scenarios - Accompanying animation files of the key concepts are available to download for free online. www.hoddereducation.co.uk/cambridgeextras-1 - Answers are available on the Teacher's CD. This book covers the IGCSE (0478), O Level (2210) and US IGCSE entry (0473) syllabuses, which are for first examination 2015. It may also be a useful reference for students taking the new Computer Science AS level course (9608).
Computational Genomics with R
Title | Computational Genomics with R PDF eBook |
Author | Altuna Akalin |
Publisher | CRC Press |
Pages | 463 |
Release | 2020-12-16 |
Genre | Mathematics |
ISBN | 1498781861 |
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Geocomputation with R
Title | Geocomputation with R PDF eBook |
Author | Robin Lovelace |
Publisher | CRC Press |
Pages | 354 |
Release | 2019-03-22 |
Genre | Mathematics |
ISBN | 1351396900 |
Geocomputation with R is for people who want to analyze, visualize and model geographic data with open source software. It is based on R, a statistical programming language that has powerful data processing, visualization, and geospatial capabilities. The book equips you with the knowledge and skills to tackle a wide range of issues manifested in geographic data, including those with scientific, societal, and environmental implications. This book will interest people from many backgrounds, especially Geographic Information Systems (GIS) users interested in applying their domain-specific knowledge in a powerful open source language for data science, and R users interested in extending their skills to handle spatial data. The book is divided into three parts: (I) Foundations, aimed at getting you up-to-speed with geographic data in R, (II) extensions, which covers advanced techniques, and (III) applications to real-world problems. The chapters cover progressively more advanced topics, with early chapters providing strong foundations on which the later chapters build. Part I describes the nature of spatial datasets in R and methods for manipulating them. It also covers geographic data import/export and transforming coordinate reference systems. Part II represents methods that build on these foundations. It covers advanced map making (including web mapping), "bridges" to GIS, sharing reproducible code, and how to do cross-validation in the presence of spatial autocorrelation. Part III applies the knowledge gained to tackle real-world problems, including representing and modeling transport systems, finding optimal locations for stores or services, and ecological modeling. Exercises at the end of each chapter give you the skills needed to tackle a range of geospatial problems. Solutions for each chapter and supplementary materials providing extended examples are available at https://geocompr.github.io/geocompkg/articles/.
Computational Complexity
Title | Computational Complexity PDF eBook |
Author | Christos H. Papadimitriou |
Publisher | MacMillan Publishing Company |
Pages | 523 |
Release | 1994 |
Genre | Computational complexity |
ISBN | 9780020153085 |
The first unified introduction and reference for the field of computational complexity. Virtually non-existent only 25 years ago, computational complexity has expanded tremendously and now comprises a major part of the researh activity in theoretical science.
The Art of R Programming
Title | The Art of R Programming PDF eBook |
Author | Norman Matloff |
Publisher | No Starch Press |
Pages | 404 |
Release | 2011-10-11 |
Genre | Computers |
ISBN | 1593273843 |
R is the world's most popular language for developing statistical software: Archaeologists use it to track the spread of ancient civilizations, drug companies use it to discover which medications are safe and effective, and actuaries use it to assess financial risks and keep economies running smoothly. The Art of R Programming takes you on a guided tour of software development with R, from basic types and data structures to advanced topics like closures, recursion, and anonymous functions. No statistical knowledge is required, and your programming skills can range from hobbyist to pro. Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: –Create artful graphs to visualize complex data sets and functions –Write more efficient code using parallel R and vectorization –Interface R with C/C++ and Python for increased speed or functionality –Find new R packages for text analysis, image manipulation, and more –Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.
The R Book
Title | The R Book PDF eBook |
Author | Michael J. Crawley |
Publisher | John Wiley & Sons |
Pages | 953 |
Release | 2007-06-13 |
Genre | Mathematics |
ISBN | 9780470515068 |
The high-level language of R is recognized as one of the mostpowerful and flexible statistical software environments, and israpidly becoming the standard setting for quantitative analysis,statistics and graphics. R provides free access to unrivalledcoverage and cutting-edge applications, enabling the user to applynumerous statistical methods ranging from simple regression to timeseries or multivariate analysis. Building on the success of the author’s bestsellingStatistics: An Introduction using R, The R Book ispacked with worked examples, providing an all inclusive guide to R,ideal for novice and more accomplished users alike. The bookassumes no background in statistics or computing and introduces theadvantages of the R environment, detailing its applications in awide range of disciplines. Provides the first comprehensive reference manual for the Rlanguage, including practical guidance and full coverage of thegraphics facilities. Introduces all the statistical models covered by R, beginningwith simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression andanalysis of variance, through to generalized linear models,generalized mixed models, time series, spatial statistics,multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates andprofessionals in science, engineering and medicine. It is alsoideal for students and professionals in statistics, economics,geography and the social sciences.
Discrete Mathematics for Computer Science
Title | Discrete Mathematics for Computer Science PDF eBook |
Author | Gary Haggard |
Publisher | Cengage Learning |
Pages | 0 |
Release | 2006 |
Genre | Computers |
ISBN | 9780534495015 |
Master the fundamentals of discrete mathematics with DISCRETE MATHEMATICS FOR COMPUTER SCIENCE with Student Solutions Manual CD-ROM! An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems and this mathematics text shows you how to express precise ideas in clear mathematical language. Through a wealth of exercises and examples, you will learn how mastering discrete mathematics will help you develop important reasoning skills that will continue to be useful throughout your career.