Communication Efficient Federated Learning for Wireless Networks

Communication Efficient Federated Learning for Wireless Networks
Title Communication Efficient Federated Learning for Wireless Networks PDF eBook
Author Mingzhe Chen
Publisher Springer Nature
Pages 189
Release
Genre
ISBN 3031512669

Download Communication Efficient Federated Learning for Wireless Networks Book in PDF, Epub and Kindle

Federated Learning

Federated Learning
Title Federated Learning PDF eBook
Author Qiang Yang
Publisher Springer Nature
Pages 291
Release 2020-11-25
Genre Computers
ISBN 3030630765

Download Federated Learning Book in PDF, Epub and Kindle

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Federated Learning for Wireless Networks

Federated Learning for Wireless Networks
Title Federated Learning for Wireless Networks PDF eBook
Author Choong Seon Hong
Publisher Springer Nature
Pages 257
Release 2022-01-01
Genre Computers
ISBN 9811649634

Download Federated Learning for Wireless Networks Book in PDF, Epub and Kindle

Recently machine learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using machine learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, federated learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training. As such, building incentive mechanisms is indispensable for FL networks. This book provides a comprehensive overview of FL for wireless networks. It is divided into three main parts: The first part briefly discusses the fundamentals of FL for wireless networks, while the second part comprehensively examines the design and analysis of wireless FL, covering resource optimization, incentive mechanism, security and privacy. It also presents several solutions based on optimization theory, graph theory, and game theory to optimize the performance of federated learning in wireless networks. Lastly, the third part describes several applications of FL in wireless networks.

Coded Computing

Coded Computing
Title Coded Computing PDF eBook
Author Songze Li
Publisher
Pages 148
Release 2020
Genre Coding theory
ISBN 9781680837056

Download Coded Computing Book in PDF, Epub and Kindle

We introduce the concept of “coded computing”, a novel computing paradigm that utilizes coding theory to effectively inject and leverage data/computation redundancy to mitigate several fundamental bottlenecks in large-scale distributed computing, namely communication bandwidth, straggler’s (i.e., slow or failing nodes) delay, privacy and security bottlenecks.

Federated Learning Over Wireless Edge Networks

Federated Learning Over Wireless Edge Networks
Title Federated Learning Over Wireless Edge Networks PDF eBook
Author Wei Yang Bryan Lim
Publisher Springer Nature
Pages 175
Release 2022-09-28
Genre Technology & Engineering
ISBN 3031078381

Download Federated Learning Over Wireless Edge Networks Book in PDF, Epub and Kindle

This book first presents a tutorial on Federated Learning (FL) and its role in enabling Edge Intelligence over wireless edge networks. This provides readers with a concise introduction to the challenges and state-of-the-art approaches towards implementing FL over the wireless edge network. Then, in consideration of resource heterogeneity at the network edge, the authors provide multifaceted solutions at the intersection of network economics, game theory, and machine learning towards improving the efficiency of resource allocation for FL over the wireless edge networks. A clear understanding of such issues and the presented theoretical studies will serve to guide practitioners and researchers in implementing resource-efficient FL systems and solving the open issues in FL respectively.

Machine Learning and Wireless Communications

Machine Learning and Wireless Communications
Title Machine Learning and Wireless Communications PDF eBook
Author Yonina C. Eldar
Publisher Cambridge University Press
Pages 560
Release 2022-06-30
Genre Technology & Engineering
ISBN 1108967736

Download Machine Learning and Wireless Communications Book in PDF, Epub and Kindle

How can machine learning help the design of future communication networks – and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications – an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge.

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks

Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks
Title Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks PDF eBook
Author Krishna Kant Singh
Publisher John Wiley & Sons
Pages 272
Release 2020-07-08
Genre Computers
ISBN 1119640369

Download Machine Learning and Cognitive Computing for Mobile Communications and Wireless Networks Book in PDF, Epub and Kindle

Communication and network technology has witnessed recent rapid development and numerous information services and applications have been developed globally. These technologies have high impact on society and the way people are leading their lives. The advancement in technology has undoubtedly improved the quality of service and user experience yet a lot needs to be still done. Some areas that still need improvement include seamless wide-area coverage, high-capacity hot-spots, low-power massive-connections, low-latency and high-reliability and so on. Thus, it is highly desirable to develop smart technologies for communication to improve the overall services and management of wireless communication. Machine learning and cognitive computing have converged to give some groundbreaking solutions for smart machines. With these two technologies coming together, the machines can acquire the ability to reason similar to the human brain. The research area of machine learning and cognitive computing cover many fields like psychology, biology, signal processing, physics, information theory, mathematics, and statistics that can be used effectively for topology management. Therefore, the utilization of machine learning techniques like data analytics and cognitive power will lead to better performance of communication and wireless systems.