Combinatorial Stochastic Processes
Title | Combinatorial Stochastic Processes PDF eBook |
Author | Jim Pitman |
Publisher | Springer Science & Business Media |
Pages | 257 |
Release | 2006-05-11 |
Genre | Mathematics |
ISBN | 354030990X |
The purpose of this text is to bring graduate students specializing in probability theory to current research topics at the interface of combinatorics and stochastic processes. There is particular focus on the theory of random combinatorial structures such as partitions, permutations, trees, forests, and mappings, and connections between the asymptotic theory of enumeration of such structures and the theory of stochastic processes like Brownian motion and Poisson processes.
Convergence of Stochastic Processes
Title | Convergence of Stochastic Processes PDF eBook |
Author | D. Pollard |
Publisher | David Pollard |
Pages | 223 |
Release | 1984-10-08 |
Genre | Mathematics |
ISBN | 0387909907 |
Functionals on stochastic processes; Uniform convergence of empirical measures; Convergence in distribution in euclidean spaces; Convergence in distribution in metric spaces; The uniform metric on space of cadlag functions; The skorohod metric on D [0, oo); Central limit teorems; Martingales.
Reconstructing Macroeconomics
Title | Reconstructing Macroeconomics PDF eBook |
Author | Masanao Aoki |
Publisher | Cambridge University Press |
Pages | 282 |
Release | 2007 |
Genre | Business & Economics |
ISBN | 0521831067 |
In this book, the authors reconceptualize existing macroeconomics by treating equilibria as statistical distributions, not as fixed points.
An Introduction to Stochastic Modeling
Title | An Introduction to Stochastic Modeling PDF eBook |
Author | Howard M. Taylor |
Publisher | Academic Press |
Pages | 410 |
Release | 2014-05-10 |
Genre | Mathematics |
ISBN | 1483269272 |
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Essentials of Stochastic Processes
Title | Essentials of Stochastic Processes PDF eBook |
Author | Richard Durrett |
Publisher | Springer |
Pages | 282 |
Release | 2016-11-07 |
Genre | Mathematics |
ISBN | 3319456148 |
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory
Title | Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory PDF eBook |
Author | Roland Speicher |
Publisher | American Mathematical Soc. |
Pages | 105 |
Release | 1998 |
Genre | Mathematics |
ISBN | 0821806939 |
Free probability theory, introduced by Voiculescu, has developed very actively in the last few years and has had an increasing impact on quite different fields in mathematics and physics. Whereas the subject arose out of the field of von Neumann algebras, presented here is a quite different view of Voiculescu's amalgamated free product. This combinatorial description not only allows re-proving of most of Voiculescu's results in a concise and elegant way, but also opens the way for many new results. Unlike other approaches, this book emphasizes the combinatorial structure of the concept of ``freeness''. This gives an elegant and easily accessible description of freeness and leads to new results in unexpected directions. Specifically, a mathematical framework for otherwise quite ad hoc approximations in physics emerges.
Combinatorics and Random Matrix Theory
Title | Combinatorics and Random Matrix Theory PDF eBook |
Author | Jinho Baik |
Publisher | American Mathematical Soc. |
Pages | 478 |
Release | 2016-06-22 |
Genre | Mathematics |
ISBN | 0821848410 |
Over the last fifteen years a variety of problems in combinatorics have been solved in terms of random matrix theory. More precisely, the situation is as follows: the problems at hand are probabilistic in nature and, in an appropriate scaling limit, it turns out that certain key quantities associated with these problems behave statistically like the eigenvalues of a (large) random matrix. Said differently, random matrix theory provides a “stochastic special function theory” for a broad and growing class of problems in combinatorics. The goal of this book is to analyze in detail two key examples of this phenomenon, viz., Ulam's problem for increasing subsequences of random permutations and domino tilings of the Aztec diamond. Other examples are also described along the way, but in less detail. Techniques from many different areas in mathematics are needed to analyze these problems. These areas include combinatorics, probability theory, functional analysis, complex analysis, and the theory of integrable systems. The book is self-contained, and along the way we develop enough of the theory we need from each area that a general reader with, say, two or three years experience in graduate school can learn the subject directly from the text.