Classical Topology and Combinatorial Group Theory
Title | Classical Topology and Combinatorial Group Theory PDF eBook |
Author | John Stillwell |
Publisher | Springer Science & Business Media |
Pages | 344 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461243726 |
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.
Combinatorial Group Theory and Topology
Title | Combinatorial Group Theory and Topology PDF eBook |
Author | S. M. Gersten |
Publisher | Princeton University Press |
Pages | 568 |
Release | 1987-05-21 |
Genre | Mathematics |
ISBN | 9780691084107 |
Group theory and topology are closely related. The region of their interaction, combining the logical clarity of algebra with the depths of geometric intuition, is the subject of Combinatorial Group Theory and Topology. The work includes papers from a conference held in July 1984 at Alta Lodge, Utah. Contributors to the book include Roger Alperin, Hyman Bass, Max Benson, Joan S. Birman, Andrew J. Casson, Marshall Cohen, Donald J. Collins, Robert Craggs, Michael Dyer, Beno Eckmann, Stephen M. Gersten, Jane Gilman, Robert H. Gilman, Narain D. Gupta, John Hempel, James Howie, Roger Lyndon, Martin Lustig, Lee P. Neuwirth, Andrew J. Nicas, N. Patterson, John G. Ratcliffe, Frank Rimlinger, Caroline Series, John R. Stallings, C. W. Stark, and A. Royce Wolf.
Combinatorial Group Theory
Title | Combinatorial Group Theory PDF eBook |
Author | Daniel E. Cohen |
Publisher | Cambridge University Press |
Pages | 325 |
Release | 1989-08-17 |
Genre | Mathematics |
ISBN | 0521341337 |
In this book the author aims to show the value of using topological methods in combinatorial group theory.
Topics in Combinatorial Group Theory
Title | Topics in Combinatorial Group Theory PDF eBook |
Author | Gilbert Baumslag |
Publisher | Springer Science & Business Media |
Pages | 180 |
Release | 1993-09-01 |
Genre | Mathematics |
ISBN | 9783764329211 |
Combinatorial group theory is a loosely defined subject, with close connections to topology and logic. With surprising frequency, problems in a wide variety of disciplines, including differential equations, automorphic functions and geometry, have been distilled into explicit questions about groups, typically of the following kind: Are the groups in a given class finite (e.g., the Burnside problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether they are isomorphic or not? The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. These notes, bridging the very beginning of the theory to new results and developments, are devoted to a number of topics in combinatorial group theory and serve as an introduction to the subject on the graduate level.
A Combinatorial Introduction to Topology
Title | A Combinatorial Introduction to Topology PDF eBook |
Author | Michael Henle |
Publisher | Courier Corporation |
Pages | 340 |
Release | 1994-01-01 |
Genre | Mathematics |
ISBN | 9780486679662 |
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.
Two-Dimensional Homotopy and Combinatorial Group Theory
Title | Two-Dimensional Homotopy and Combinatorial Group Theory PDF eBook |
Author | Cynthia Hog-Angeloni |
Publisher | Cambridge University Press |
Pages | 428 |
Release | 1993-12-09 |
Genre | Mathematics |
ISBN | 0521447003 |
Basic work on two-dimensional homotopy theory dates back to K. Reidemeister and J. H. C. Whitehead. Much work in this area has been done since then, and this book considers the current state of knowledge in all the aspects of the subject. The editors start with introductory chapters on low-dimensional topology, covering both the geometric and algebraic sides of the subject, the latter including crossed modules, Reidemeister-Peiffer identities, and a concrete and modern discussion of Whitehead's algebraic classification of 2-dimensional homotopy types. Further chapters have been skilfully selected and woven together to form a coherent picture. The latest algebraic results and their applications to 3- and 4-dimensional manifolds are dealt with. The geometric nature of the subject is illustrated to the full by over 100 diagrams. Final chapters summarize and contribute to the present status of the conjectures of Zeeman, Whitehead, and Andrews-Curtis. No other book covers all these topics. Some of the material here has been used in courses, making this book valuable for anyone with an interest in two-dimensional homotopy theory, from graduate students to research workers.
Topology and Combinatorics of 3-Manifolds
Title | Topology and Combinatorics of 3-Manifolds PDF eBook |
Author | Klaus Johannson |
Publisher | Springer |
Pages | 464 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540491813 |
This book is a study of combinatorial structures of 3-mani- folds, especially Haken 3-manifolds. Specifically, it is concerned with Heegard graphs in Haken 3-manifolds, i.e., with graphs whose complements have a free fundamental group. These graphs always exist. They fix not only a combinatorial stucture but also a presentation for the fundamental group of the underlying 3-manifold. The starting point of the book is the result that the intersection of Heegard graphs with incompressible surfaces, or hierarchies of such surfaces, is very rigid. A number of finiteness results lead up to a ri- gidity theorem for Heegard graphs. The book is intended for graduate students and researchers in low-dimensional topolo- gy as well as combinatorial theory. It is self-contained and requires only a basic knowledge of the theory of 3-manifolds