Combinatorial Commutative Algebra

Combinatorial Commutative Algebra
Title Combinatorial Commutative Algebra PDF eBook
Author Ezra Miller
Publisher Springer Science & Business Media
Pages 442
Release 2005-06-21
Genre Mathematics
ISBN 9780387237077

Download Combinatorial Commutative Algebra Book in PDF, Epub and Kindle

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Combinatorics and Commutative Algebra

Combinatorics and Commutative Algebra
Title Combinatorics and Commutative Algebra PDF eBook
Author Richard P. Stanley
Publisher Springer Science & Business Media
Pages 173
Release 2004-10-15
Genre Mathematics
ISBN 0817643699

Download Combinatorics and Commutative Algebra Book in PDF, Epub and Kindle

* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics

Algebraic Combinatorics

Algebraic Combinatorics
Title Algebraic Combinatorics PDF eBook
Author Richard P. Stanley
Publisher Springer Science & Business Media
Pages 226
Release 2013-06-17
Genre Mathematics
ISBN 1461469988

Download Algebraic Combinatorics Book in PDF, Epub and Kindle

Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry

Combinatorial Aspects of Commutative Algebra and Algebraic Geometry
Title Combinatorial Aspects of Commutative Algebra and Algebraic Geometry PDF eBook
Author Gunnar Fløystad
Publisher Springer Science & Business Media
Pages 186
Release 2011-05-16
Genre Mathematics
ISBN 3642194923

Download Combinatorial Aspects of Commutative Algebra and Algebraic Geometry Book in PDF, Epub and Kindle

The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.

Combinatorial Commutative Algebra

Combinatorial Commutative Algebra
Title Combinatorial Commutative Algebra PDF eBook
Author Ezra Miller
Publisher Springer Science & Business Media
Pages 424
Release 2004-12-21
Genre Mathematics
ISBN 0387223568

Download Combinatorial Commutative Algebra Book in PDF, Epub and Kindle

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs

Algebraic Combinatorics and Coinvariant Spaces

Algebraic Combinatorics and Coinvariant Spaces
Title Algebraic Combinatorics and Coinvariant Spaces PDF eBook
Author Francois Bergeron
Publisher CRC Press
Pages 227
Release 2009-07-06
Genre Mathematics
ISBN 1439865078

Download Algebraic Combinatorics and Coinvariant Spaces Book in PDF, Epub and Kindle

Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and

Combinatorial Structures in Algebra and Geometry

Combinatorial Structures in Algebra and Geometry
Title Combinatorial Structures in Algebra and Geometry PDF eBook
Author Dumitru I. Stamate
Publisher Springer Nature
Pages 182
Release 2020-09-01
Genre Mathematics
ISBN 3030521117

Download Combinatorial Structures in Algebra and Geometry Book in PDF, Epub and Kindle

This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).