Color Centers in Semiconductors for Quantum Applications
Title | Color Centers in Semiconductors for Quantum Applications PDF eBook |
Author | Joel Davidsson |
Publisher | Linköping University Electronic Press |
Pages | 72 |
Release | 2021-02-08 |
Genre | Electronic books |
ISBN | 9179297307 |
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.
Diamond for Quantum Applications Part 1
Title | Diamond for Quantum Applications Part 1 PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 318 |
Release | 2020-06-16 |
Genre | Science |
ISBN | 0128202416 |
Diamond for Quantum Applications Part 1, Volume 103, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Semiconductors and Semimetals series - Updated release includes the latest information on the use of diamonds for quantum applications
Defects In Functional Materials
Title | Defects In Functional Materials PDF eBook |
Author | Chi-chung Francis Ling |
Publisher | World Scientific |
Pages | 338 |
Release | 2020-08-21 |
Genre | Science |
ISBN | 9811203180 |
The research of functional materials has attracted extensive attention in recent years, and its advancement nitrifies the developments of modern sciences and technologies like green sciences and energy, aerospace, medical and health, telecommunications, and information technology. The present book aims to summarize the research activities carried out in recent years devoting to the understanding of the physics and chemistry of how the defects play a role in the electrical, optical and magnetic properties and the applications of the different functional materials in the fields of magnetism, optoelectronic, and photovoltaic etc.
Domestic Manufacturing Capabilities for Critical DoD Applications
Title | Domestic Manufacturing Capabilities for Critical DoD Applications PDF eBook |
Author | National Academies of Sciences, Engineering, and Medicine |
Publisher | National Academies Press |
Pages | 109 |
Release | 2019-12-21 |
Genre | Computers |
ISBN | 0309494761 |
Recent advancements in quantum-enabled systems present a variety of new opportunities and challenges. These technologies are important developments for a variety of computing, communications, and sensing applications. However, many materials and components relevant to quantum-enabled systems exist outside of the United States, and it is important to promote the development of assured domestic sources of materials, manufacturing capabilities, and expertise. The National Academies of Sciences, Engineering, and Medicine convened a 2-day workshop to explore implications and concerns related to the application of quantum-enabled systems in the United States. This workshop focused on quantum-enabled computing systems, quantum communications and networks, and quantum sensing opportunities. Participants explored the path to quantum computing, communications, and networks, opportunities for collaboration, as well as key gaps, supply chain concerns, and security issues. This publication summarizes the presentations and discussions from the workshop.
Diamond for Quantum Applications Part 2
Title | Diamond for Quantum Applications Part 2 PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 274 |
Release | 2020-10-15 |
Genre | Technology & Engineering |
ISBN | 0323850251 |
Diamond for Quantum Applications Part Two, Volume 104, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics including Color center formation by deterministic single ion implantation, Diamond and Its Investigation by Advanced TEM, Fundaments of photo-electric readout of spin states in diamond, Integrated quantum photonic circuits with polycrystalline diamond, Diamond Membranes, and Diamond nanophotonic and opt mechanics. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Semiconductors and Semimetals series - Updated release includes the latest information on the use of diamonds for quantum applications
Semiconductor Quantum Bits
Title | Semiconductor Quantum Bits PDF eBook |
Author | Fritz Henneberger |
Publisher | CRC Press |
Pages | 516 |
Release | 2016-04-19 |
Genre | Science |
ISBN | 9814241199 |
This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer
Quantum Dots
Title | Quantum Dots PDF eBook |
Author | Inamuddin |
Publisher | Materials Research Forum LLC |
Pages | 360 |
Release | 2021-04-05 |
Genre | Technology & Engineering |
ISBN | 1644901250 |
The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications. The unique properties of these new nanomaterials offer multifunctional applications in such fields as photovoltaics, light-emitting diodes, field-effect transistors, lasers, photodetectors, solar cells, biomedical diagnostics and quantum computing. Keywords: Quantum Dots (QD), Photovoltaics, Light-emitting Diodes, Field-effect Transistors, Lasers, Photodetectors, Solar Cells, Biomedical Diagnostics, Quantum Computing, QD Synthesis, Carbon QDs, Graphene QDs, QD Sensors, Supercapacitors, Magnetic Quantum Dots, Cellular/Molecular Separation, Chromatographic Separation Column, Photostability, Luminescence of Carbon QDs, QD Materials for Water Treatment, Semiconductor Quantum Dots, QD Drug Delivery, Antibacterial Quantum Dots.