Coalescing Brownian Motions on the Line

Coalescing Brownian Motions on the Line
Title Coalescing Brownian Motions on the Line PDF eBook
Author Richard Alejandro Arratia
Publisher
Pages 284
Release 1979
Genre Brownian motion processes
ISBN

Download Coalescing Brownian Motions on the Line Book in PDF, Epub and Kindle

Stochastic Flows in the Brownian Web and Net

Stochastic Flows in the Brownian Web and Net
Title Stochastic Flows in the Brownian Web and Net PDF eBook
Author Emmanuel Schertzer
Publisher American Mathematical Soc.
Pages 172
Release 2014-01-08
Genre Mathematics
ISBN 0821890883

Download Stochastic Flows in the Brownian Web and Net Book in PDF, Epub and Kindle

It is known that certain one-dimensional nearest-neighbor random walks in i.i.d. random space-time environments have diffusive scaling limits. Here, in the continuum limit, the random environment is represented by a `stochastic flow of kernels', which is a collection of random kernels that can be loosely interpreted as the transition probabilities of a Markov process in a random environment. The theory of stochastic flows of kernels was first developed by Le Jan and Raimond, who showed that each such flow is characterized by its -point motions. The authors' work focuses on a class of stochastic flows of kernels with Brownian -point motions which, after their inventors, will be called Howitt-Warren flows. The authors' main result gives a graphical construction of general Howitt-Warren flows, where the underlying random environment takes on the form of a suitably marked Brownian web. This extends earlier work of Howitt and Warren who showed that a special case, the so-called "erosion flow", can be constructed from two coupled "sticky Brownian webs". The authors' construction for general Howitt-Warren flows is based on a Poisson marking procedure developed by Newman, Ravishankar and Schertzer for the Brownian web. Alternatively, the authors show that a special subclass of the Howitt-Warren flows can be constructed as random flows of mass in a Brownian net, introduced by Sun and Swart. Using these constructions, the authors prove some new results for the Howitt-Warren flows.

Constructing Nonhomeomorphic Stochastic Flows

Constructing Nonhomeomorphic Stochastic Flows
Title Constructing Nonhomeomorphic Stochastic Flows PDF eBook
Author R. W. R. Darling
Publisher American Mathematical Soc.
Pages 109
Release 1987
Genre Mathematics
ISBN 0821824392

Download Constructing Nonhomeomorphic Stochastic Flows Book in PDF, Epub and Kindle

The purpose of this article is the construction of stochastic flows from the finite-dimensional distributions without any smoothness assumptions. Also examines the relation between covariance functions and finite-dimensional distributions. The stochastic continuity of stochastic flows in the time parameter are proved in each section. These results give some extensions of the results obtained by Harris, by Baxendale and Harris and by other authors. In particular, the author studies coalescing flows, which were introduced by Harris for the study of flows of nonsmooth maps.

Random Motions in Markov and Semi-Markov Random Environments 2

Random Motions in Markov and Semi-Markov Random Environments 2
Title Random Motions in Markov and Semi-Markov Random Environments 2 PDF eBook
Author Anatoliy Pogorui
Publisher John Wiley & Sons
Pages 224
Release 2021-03-16
Genre Mathematics
ISBN 1786307065

Download Random Motions in Markov and Semi-Markov Random Environments 2 Book in PDF, Epub and Kindle

This book is the second of two volumes on random motions in Markov and semi-Markov random environments. This second volume focuses on high-dimensional random motions. This volume consists of two parts. The first expands many of the results found in Volume 1 to higher dimensions. It presents new results on the random motion of the realistic three-dimensional case, which has so far been barely mentioned in the literature, and deals with the interaction of particles in Markov and semi-Markov media, which has, in contrast, been a topic of intense study. The second part contains applications of Markov and semi-Markov motions in mathematical finance. It includes applications of telegraph processes in modeling stock price dynamics and investigates the pricing of variance, volatility, covariance and correlation swaps with Markov volatility and the same pricing swaps with semi-Markov volatilities.

Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II
Title Diffusion Processes and Related Problems in Analysis, Volume II PDF eBook
Author V. Wihstutz
Publisher Springer Science & Business Media
Pages 344
Release 2012-12-06
Genre Mathematics
ISBN 1461203899

Download Diffusion Processes and Related Problems in Analysis, Volume II Book in PDF, Epub and Kindle

During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

Sojourns in Probability Theory and Statistical Physics - I

Sojourns in Probability Theory and Statistical Physics - I
Title Sojourns in Probability Theory and Statistical Physics - I PDF eBook
Author Vladas Sidoravicius
Publisher Springer Nature
Pages 348
Release 2019-10-17
Genre Mathematics
ISBN 9811502943

Download Sojourns in Probability Theory and Statistical Physics - I Book in PDF, Epub and Kindle

Charles M. (Chuck) Newman has been a leader in Probability Theory and Statistical Physics for nearly half a century. This three-volume set is a celebration of the far-reaching scientific impact of his work. It consists of articles by Chuck’s collaborators and colleagues across a number of the fields to which he has made contributions of fundamental significance. This publication was conceived during a conference in 2016 at NYU Shanghai that coincided with Chuck's 70th birthday. The sub-titles of the three volumes are: I. Spin Glasses and Statistical Mechanics II. Brownian Web and Percolation III. Interacting Particle Systems and Random Walks The articles in these volumes, which cover a wide spectrum of topics, will be especially useful for graduate students and researchers who seek initiation and inspiration in Probability Theory and Statistical Physics.

Random Motions in Markov and Semi-Markov Random Environments 1

Random Motions in Markov and Semi-Markov Random Environments 1
Title Random Motions in Markov and Semi-Markov Random Environments 1 PDF eBook
Author Anatoliy Pogorui
Publisher John Wiley & Sons
Pages 256
Release 2021-01-12
Genre Mathematics
ISBN 1119808189

Download Random Motions in Markov and Semi-Markov Random Environments 1 Book in PDF, Epub and Kindle

This book is the first of two volumes on random motions in Markov and semi-Markov random environments. This first volume focuses on homogenous random motions. This volume consists of two parts, the first describing the basic concepts and methods that have been developed for random evolutions. These methods are the foundational tools used in both volumes, and this description includes many results in potential operators. Some techniques to find closed-form expressions in relevant applications are also presented. The second part deals with asymptotic results and presents a variety of applications, including random motion with different types of boundaries, the reliability of storage systems and solutions of partial differential equations with constant coefficients, using commutative algebra techniques. It also presents an alternative formulation to the Black-Scholes formula in finance, fading evolutions and telegraph processes, including jump telegraph processes and the estimation of the number of level crossings for telegraph processes.