Click Chemistry for Biotechnology and Materials Science
Title | Click Chemistry for Biotechnology and Materials Science PDF eBook |
Author | Joerg Lahann |
Publisher | John Wiley & Sons |
Pages | 432 |
Release | 2009-12-15 |
Genre | Technology & Engineering |
ISBN | 9780470748855 |
Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.
Click Chemistry for Biotechnology and Materials Science
Title | Click Chemistry for Biotechnology and Materials Science PDF eBook |
Author | Joerg Lahann |
Publisher | John Wiley & Sons |
Pages | 437 |
Release | 2009-11-23 |
Genre | Technology & Engineering |
ISBN | 0470699701 |
Mimicking natural biochemical processes, click chemistry is a modular approach to organic synthesis, joining together small chemical units quickly, efficiently and predictably. In contrast to complex traditional synthesis, click reactions offer high selectivity and yields, near-perfect reliability and exceptional tolerance towards a wide range of functional groups and reaction conditions. These ‘spring loaded’ reactions are achieved by using a high thermodynamic driving force, and are attracting tremendous attention throughout the chemical community. Originally introduced with the focus on drug discovery, the concept has been successfully applied to materials science, polymer chemistry and biotechnology. The first book to consider this topic, Click Chemistry for Biotechnology and Materials Science examines the fundamentals of click chemistry, its application to the precise design and synthesis of macromolecules, and its numerous applications in materials science and biotechnology. The book surveys the current research, discusses emerging trends and future applications, and provides an important nucleation point for research. Edited by one of the top 100 young innovators with the greatest potential to have an impact on technology in the 21st century according to Technology Review and with contributions from pioneers in the field, Click Chemistry for Biotechnology and Materials Science provides an ideal reference for anyone wanting to learn more about click reactions.
Click Chemistry
Title | Click Chemistry PDF eBook |
Author | Chen Yu |
Publisher | |
Pages | 0 |
Release | 2017 |
Genre | Biocompatibility |
ISBN | 9781536119039 |
Click chemistry, which is also referred to as linkage chemistry, dynamic, combinatorial chemistry or quick linking combinatorial chemistry describes the reaction that joins molecular fragments as simply, efficient and versatile as clicking a mouse. The two units with specific click structures can be linked by a click reaction no matter what is attached to the structure, and only the specific click structures can be joined. It emphasises the development of new combinatorial chemistries on the basis of the synthesis of efficient and highly selective carbon-heteroatom bonds (C-X-C), and effectively prepares molecules with high diversity via these simple reactions. It significantly simplified and promoted the development of synthesis chemistry. Click chemistry has become one of the most useful and attractive synthetic strategies in many fields. In this book, the definition of click chemistry is explained, the characteristics and types of click chemistry are introduced, and some specific reaction types are focused on. The progress for using click chemistry for the synthesis and functionalisation of hydrogels, elastomers, surface modifications, membrane preparations, assemble polyaromatic structures, biomedical fields and optical sensing in biological analyses are described in detail. The problems and challenges for using click chemistry in different fields are analysed.
Complex Macromolecular Architectures
Title | Complex Macromolecular Architectures PDF eBook |
Author | Nikos Hadjichristidis |
Publisher | John Wiley & Sons |
Pages | 840 |
Release | 2011-04-20 |
Genre | Science |
ISBN | 0470828277 |
The field of CMA (complex macromolecular architecture) stands at the cutting edge of materials science, and has been a locus of intense research activity in recent years. This book gives an extensive description of the synthesis, characterization, and self-assembly of recently-developed advanced architectural materials with a number of potential applications. The architectural polymers, including bio-conjugated hybrid polymers with poly(amino acid)s and gluco-polymers, star-branched and dendrimer-like hyperbranched polymers, cyclic polymers, dendrigraft polymers, rod-coil and helix-coil block copolymers, are introduced chapter by chapter in the book. In particular, the book also emphasizes the topic of synthetic breakthroughs by living/controlled polymerization since 2000. Furthermore, renowned authors contribute on special topics such as helical polyisocyanates, metallopolymers, stereospecific polymers, hydrogen-bonded supramolecular polymers, conjugated polymers, and polyrotaxanes, which have attracted considerable interest as novel polymer materials with potential future applications. In addition, recent advances in reactive blending achieved with well-defined end-functionalized polymers are discussed from an industrial point of view. Topics on polymer-based nanotechnologies, including self-assembled architectures and suprastructures, nano-structured materials and devices, nanofabrication, surface nanostructures, and their AFM imaging analysis of hetero-phased polymers are also included. Provides comprehensive coverage of recently developed advanced architectural materials Covers hot new areas such as: click chemistry; chain walking; polyhomologation; ADMET Edited by highly regarded scientists in the field Contains contributions from 26 leading experts from Europe, North America, and Asia Researchers in academia and industry specializing in polymer chemistry will find this book to be an ideal survey of the most recent advances in the area. The book is also suitable as supplementary reading for students enrolled in Polymer Synthetic Chemistry, Polymer Synthesis, Polymer Design, Advanced Polymer Chemistry, Soft Matter Science, and Materials Science courses. Color versions of selected figures can be found at www.wiley.com/go/hadjichristidis
Coupling and Decoupling of Diverse Molecular Units in Glycosciences
Title | Coupling and Decoupling of Diverse Molecular Units in Glycosciences PDF eBook |
Author | Zbigniew J. Witczak |
Publisher | Springer |
Pages | 340 |
Release | 2017-11-20 |
Genre | Science |
ISBN | 3319655876 |
This unique book covers the latest developments in coupling and decoupling of biomolecules containing functionalized carbohydrate components, being one of the first collections in this important area of applied medicinal chemistry. Connecting molecules, often referred as bio-conjugation, has become one of the most often performed procedures in modern medicinal chemistry. Sometimes, when the connected molecules are not useful anymore, they must be disconnected. The molecules that must be connected (coupled) may belong to both small and large molecules and include such constructs as glycoproteins, glycopeptides and glycans. In this work, more than 15 experts address a comprehensive range of potential and current uses of in vitro and in vivo bio-conjugation methodologies, leading to a variety of glycoconjugates. The analytical aspects of bio-conjugation are also here discussed. Medicinal and organic chemists from graduate level onwards will understand the appeal of this important book.
Organic Nanochemistry
Title | Organic Nanochemistry PDF eBook |
Author | Yuming Zhao |
Publisher | John Wiley & Sons |
Pages | 292 |
Release | 2024-01-18 |
Genre | Science |
ISBN | 111887045X |
ORGANIC NANOCHEMISTRY How-to guide for entry-level practitioners to quickly learn the cutting-edge research concepts and methodologies of modern organic nanochemistry Organic Nanochemistry describes the fundamentals of organic nanochemistry research, encompassing modern synthetic reactions, supramolecular strategies, nanostructure and property characterization techniques, and state-of-the-art data analysis and processing methods, along with synthetic chemistry as applied to organic nanomaterials and molecular devices. Accompanying each of these principles are case studies (from basic design to detailed experimental implementation) to help the reader fully comprehend the concepts and methods involved. Various theories suitable for nanoscale simulations, including quantum mechanics, semi-empirical quantum mechanics, and molecular dynamics theories, are discussed at an introductory level. Computational examples are provided, allowing interested readers to grasp essential modelling techniques for better understanding of organic nanochemistry. The content is paired with online supplementary material that includes instructional materials and guides to using common scientific software for computational modelling and simulations. Written by a highly qualified professor, Organic Nanochemistry includes discussion on: Key concepts and theories of organic chemistry, which are essential to understand the fundamental properties of organic molecular and supramolecular systems Useful synthetic methodologies for the synthesis and functionalization of organic nanomaterials, and the chemistry and application of exotic carbon nanomaterials Supramolecular aspects in organic nanochemistry, especially the well-developed disciplines of host-guest chemistry and organic self-assembly chemistry Construction and testing of molecular devices and molecular machines and state-of-the-art computational modelling methods for properties of nanoscale organic systems Guiding the reader on a journey from familiar chemical concepts and principles to cutting-edge research of nano-science and technology, Organic Nanochemistry serves as an excellent textbook learning resource for advanced and graduate students, as well as a self-study guide or how-to reference for practicing chemists.
Chemistry of Polymeric Metal Chelates
Title | Chemistry of Polymeric Metal Chelates PDF eBook |
Author | Gulzhian I. Dzhardimalieva |
Publisher | Springer |
Pages | 1036 |
Release | 2018-02-13 |
Genre | Technology & Engineering |
ISBN | 3319560247 |
This book deals with the chemistry of polymeric metal chelates. The main results and the production and chemical structure of polymers with chelate units as well as the specificity of metal complex binding of different structure are presented here. This book also reveals the transformations which components undergo in the course of chelation. Special attention is paid not only to synthetic but also to natural (including living) systems. The usage of polymeric metal chelates and their development are examined. The related research was performed for chelates with chain structure. This book is useful to researchers being active in synthesis and design of macromolecular metal chelates