Classification Pattern Recognition and Reduction of Dimensionality

Classification Pattern Recognition and Reduction of Dimensionality
Title Classification Pattern Recognition and Reduction of Dimensionality PDF eBook
Author Paruchuri Rama Krishnaiah
Publisher
Pages 0
Release 2005
Genre Cluster analysis
ISBN

Download Classification Pattern Recognition and Reduction of Dimensionality Book in PDF, Epub and Kindle

Multi-Label Dimensionality Reduction

Multi-Label Dimensionality Reduction
Title Multi-Label Dimensionality Reduction PDF eBook
Author Liang Sun
Publisher CRC Press
Pages 206
Release 2016-04-19
Genre Business & Economics
ISBN 1439806160

Download Multi-Label Dimensionality Reduction Book in PDF, Epub and Kindle

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks

Machine Learning Techniques for Multimedia

Machine Learning Techniques for Multimedia
Title Machine Learning Techniques for Multimedia PDF eBook
Author Matthieu Cord
Publisher Springer Science & Business Media
Pages 297
Release 2008-02-07
Genre Computers
ISBN 3540751718

Download Machine Learning Techniques for Multimedia Book in PDF, Epub and Kindle

Processing multimedia content has emerged as a key area for the application of machine learning techniques, where the objectives are to provide insight into the domain from which the data is drawn, and to organize that data and improve the performance of the processes manipulating it. Arising from the EU MUSCLE network, this multidisciplinary book provides a comprehensive coverage of the most important machine learning techniques used and their application in this domain.

Advances in Neural Networks - ISNN 2007

Advances in Neural Networks - ISNN 2007
Title Advances in Neural Networks - ISNN 2007 PDF eBook
Author Derong Liu
Publisher Springer
Pages 1346
Release 2007-07-14
Genre Computers
ISBN 3540723935

Download Advances in Neural Networks - ISNN 2007 Book in PDF, Epub and Kindle

This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.

Knowledge-Based Intelligent Information and Engineering Systems

Knowledge-Based Intelligent Information and Engineering Systems
Title Knowledge-Based Intelligent Information and Engineering Systems PDF eBook
Author Ignac Lovrek
Publisher Springer Science & Business Media
Pages 1079
Release 2008-08-18
Genre Business & Economics
ISBN 3540855645

Download Knowledge-Based Intelligent Information and Engineering Systems Book in PDF, Epub and Kindle

Annotation The three volume set LNAI 5177, LNAI 5178, and LNAI 5179, constitutes the refereed proceedings of the 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2008, held in Zagreb, Croatia, in September 2008. The 316 revised papers presented were carefully reviewed and selected. The papers present a wealth of original research results from the field of intelligent information processing in the broadest sense; topics covered in the first volume are artificial neural networks and connectionists systems; fuzzy and neuro-fuzzy systems; evolutionary computation; machine learning and classical AI; agent systems; knowledge based and expert systems; intelligent vision and image processing; knowledge management, ontologies, and data mining; Web intelligence, text and multimedia mining and retrieval; and intelligent robotics and control.

Pattern Recognition

Pattern Recognition
Title Pattern Recognition PDF eBook
Author Sergios Theodoridis
Publisher Elsevier
Pages 705
Release 2003-05-15
Genre Technology & Engineering
ISBN 008051362X

Download Pattern Recognition Book in PDF, Epub and Kindle

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

Fundamentals of Pattern Recognition and Machine Learning

Fundamentals of Pattern Recognition and Machine Learning
Title Fundamentals of Pattern Recognition and Machine Learning PDF eBook
Author Ulisses Braga-Neto
Publisher Springer Nature
Pages 357
Release 2020-09-10
Genre Computers
ISBN 3030276562

Download Fundamentals of Pattern Recognition and Machine Learning Book in PDF, Epub and Kindle

Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.