Classification, Identification, and Modeling of Unexploded Ordnance in Realistic Environments

Classification, Identification, and Modeling of Unexploded Ordnance in Realistic Environments
Title Classification, Identification, and Modeling of Unexploded Ordnance in Realistic Environments PDF eBook
Author Beijia Zhang
Publisher
Pages 218
Release 2008
Genre
ISBN

Download Classification, Identification, and Modeling of Unexploded Ordnance in Realistic Environments Book in PDF, Epub and Kindle

(Cont.) Therefore, these coefficients readily lend themselves for use as features by which objects can be classified as likely to be UXO or unlikely to be UXO. To do such classification, the relationship between these coefficients and the physical properties of UXO and clutter, such as differences in size or body-of-revolution properties or material heterogeneity properties, must be found. This thesis shows that such relationships are complex and require the use of the automated pattern recognition capability of machine learning. Two machine learning algorithms, Support Vector Machines and Neural Networks, are used to identify whether objects are likely to be UXO. Furthermore, the effects of small diffuse clutter fragments and uncertainty about the target position are investigated. This discrimination procedure is applied on both synthetic data from models and measurements of UXO and clutter. It is found that good discrimination is possible for up to 20 dB SNR. But the discrimination is sensitive to inaccurate estimations of a target's depth. It is found that the accuracy must be within a 10 cm deviation of an object's true depth. The general conclusion forwarded by this work is that while increasingly accurate discrimination capabilities can be produced through more detailed forward modeling and application of robust optimization and learning algorithms, the presence of noise and clutter is still of great concern. Minimization or filtering of such noise is necessary before field deployable discrimination techniques can be realized.

Multisensor Methods for Buried Unexploded Ordnance Deteciton, Discrimination, and Identification

Multisensor Methods for Buried Unexploded Ordnance Deteciton, Discrimination, and Identification
Title Multisensor Methods for Buried Unexploded Ordnance Deteciton, Discrimination, and Identification PDF eBook
Author Dwain Butler
Publisher
Pages 182
Release 1998
Genre
ISBN

Download Multisensor Methods for Buried Unexploded Ordnance Deteciton, Discrimination, and Identification Book in PDF, Epub and Kindle

Unexploded ordnance (UXO) cleanup is the number one priority Army installation remediation restoration requirement. The problem is enormous in scope, with millions of acres and hundreds of sites potentially contaminated. Before the UXO can be recovered and destroyed, it must be located. UXO location requires surface geopbysical surveys. The geophysical anomalies caused by the UXO must be detected, discriminated from geophysical anomalies caused by other sources, and ideally identified or classified. Recent UXO technology demonstrations, live site demonstrations, and practical UXO surveys for site cleanup confirm that most UXO anomalies can be detected (with probabilities of detection of 90 percent or better), however there is little evidence of discrimination capability (i.e., the false alarm rates are high), and there is no identification capability. Approaches to simultaneously increase probability of detection and decrease false alarm rate and ultimately to give identification/classification capability involve rational multisensor data integration for discrimination and advanced development of new and emerging technology for enhanced discrimination and identification. The goal of multisensor data integration is to achieve true joint inversion of data to a best-fitting model using realistic physics-based models that replicate UXO geometries and physical properties of the UXO and surrounding geologic materials. Data management, analysis, and display procedures for multisensor data are investigated. A magnetic modeling capability is developed, validated, and documented that uses a prolate spheroid model of UXO. The electromagnetic modeling of UXO signatures is more problematic, and an intermediate quasi-empirical modeling capability (a simple analytical model modified to reflect measured signature observations) is explored.

Unexploded Ordnance Detection and Mitigation

Unexploded Ordnance Detection and Mitigation
Title Unexploded Ordnance Detection and Mitigation PDF eBook
Author James Byrnes
Publisher Springer Science & Business Media
Pages 288
Release 2008-12-19
Genre Technology & Engineering
ISBN 1402092539

Download Unexploded Ordnance Detection and Mitigation Book in PDF, Epub and Kindle

The chapters in this volume were presented at the July–August 2008 NATO Advanced Study Institute on Unexploded Ordnance Detection and Mitigation. The conference was held at the beautiful Il Ciocco resort near Lucca, in the glorious Tuscany region of northern Italy. For the ninth time we gathered at this idyllic spot to explore and extend the reciprocity between mathematics and engineering. The dynamic interaction between world-renowned scientists from the usually disparate communities of pure mathematicians and applied scientists which occurred at our eight previous ASI’s continued at this meeting. The detection and neutralization of unexploded ordnance (UXO) has been of major concern for very many decades; at least since the First World war. UXO continues to be the subject of intensive research in many ?elds of science, incl- ing mathematics, signal processing (mainly radar and sonar) and chemistry. While today’s headlines emphasize the mayhem resulting from the placement of imp- vised explosive devices (IEDs), humanitarian landmine clearing continues to draw signi?cant global attention as well. In many countries of the world, landmines threaten the population and hinder reconstruction and fast, ef?cient utilization of large areas of the mined land in the aftermath of military con?icts.

Multisensor Methods for Buried Unexploded Ordnance Detection, Discrimination, and Identification

Multisensor Methods for Buried Unexploded Ordnance Detection, Discrimination, and Identification
Title Multisensor Methods for Buried Unexploded Ordnance Detection, Discrimination, and Identification PDF eBook
Author Dwain K. Butler
Publisher
Pages 181
Release 1998
Genre Explosives, Military
ISBN

Download Multisensor Methods for Buried Unexploded Ordnance Detection, Discrimination, and Identification Book in PDF, Epub and Kindle

Unexploded ordnance (UXO) cleanup is the number one priority Army installation remediation/restoration requirement The problem is enormous in scope, with millions of acres and hundreds of sites potentially contaminated. Before the UXO can be recovered and destroyed, it must be located. UXO location requires surface geophysical surveys. The geophysical anomalies caused by the UXO must be detected, discriminated from geophysical anomalies caused by other sources, and ideally identified or classified. Recent UXO technology demonstrations, live site demonstrations, and practical UXO surveys for site cleanup confirm that most UXO anomalies can be detected (with probabilities of detection of 90 percent or better), however there is little evidence of discrimination capability (i.e., the false alarm rates are high), and there is no identification capability. Approaches to simultaneously increase probability of detection and decrease false alarm rate and ultimately to give identification/classification capability involve rational multisensor data integration for discrimination and advanced development of new and emerging technology for enhanced discrimination and identification. The goal of multisensor data integration is to achieve true joint inversion of data to a best-fitting model using realistic physics-based models that replicate UXO geometries and physical properties of the UXO and surrounding geologic materials. Data management, analysis, and display procedures for multisensor data are investigated. The role of empirical, quasi-empirical, and analytical modeling for UXO geophysical signature prediction are reviewed and contrasted with approaches that require large signature databases (e.g., expert systems, neural nets, signature database comparison) for training or best-fit comparison. A magnetic modeling capability is developed, validated, and documented that uses a prolate spheroid model of UXO.

Emergency Response Guidebook

Emergency Response Guidebook
Title Emergency Response Guidebook PDF eBook
Author U.S. Department of Transportation
Publisher Simon and Schuster
Pages 400
Release 2013-06-03
Genre Technology & Engineering
ISBN 1626363765

Download Emergency Response Guidebook Book in PDF, Epub and Kindle

Does the identification number 60 indicate a toxic substance or a flammable solid, in the molten state at an elevated temperature? Does the identification number 1035 indicate ethane or butane? What is the difference between natural gas transmission pipelines and natural gas distribution pipelines? If you came upon an overturned truck on the highway that was leaking, would you be able to identify if it was hazardous and know what steps to take? Questions like these and more are answered in the Emergency Response Guidebook. Learn how to identify symbols for and vehicles carrying toxic, flammable, explosive, radioactive, or otherwise harmful substances and how to respond once an incident involving those substances has been identified. Always be prepared in situations that are unfamiliar and dangerous and know how to rectify them. Keeping this guide around at all times will ensure that, if you were to come upon a transportation situation involving hazardous substances or dangerous goods, you will be able to help keep others and yourself out of danger. With color-coded pages for quick and easy reference, this is the official manual used by first responders in the United States and Canada for transportation incidents involving dangerous goods or hazardous materials.

Recommendations on the Transport of Dangerous Goods

Recommendations on the Transport of Dangerous Goods
Title Recommendations on the Transport of Dangerous Goods PDF eBook
Author United Nations
Publisher
Pages 0
Release 2020-01-06
Genre Political Science
ISBN 9789211303940

Download Recommendations on the Transport of Dangerous Goods Book in PDF, Epub and Kindle

The Manual of Tests and Criteria contains criteria, test methods and procedures to be used for classification of dangerous goods according to the provisions of Parts 2 and 3 of the United Nations Recommendations on the Transport of Dangerous Goods, Model Regulations, as well as of chemicals presenting physical hazards according to the Globally Harmonized System of Classification and Labelling of Chemicals (GHS). As a consequence, it supplements also national or international regulations which are derived from the United Nations Recommendations on the Transport of Dangerous Goods or the GHS. At its ninth session (7 December 2018), the Committee adopted a set of amendments to the sixth revised edition of the Manual as amended by Amendment 1. This seventh revised edition takes account of these amendments. In addition, noting that the work to facilitate the use of the Manual in the context of the GHS had been completed, the Committee considered that the reference to the "Recommendations on the Transport of Dangerous Goods" in the title of the Manual was no longer appropriate, and decided that from now on, the Manual should be entitled "Manual of Tests and Criteria".

Strengthening Forensic Science in the United States

Strengthening Forensic Science in the United States
Title Strengthening Forensic Science in the United States PDF eBook
Author National Research Council
Publisher National Academies Press
Pages 348
Release 2009-07-29
Genre Law
ISBN 0309142393

Download Strengthening Forensic Science in the United States Book in PDF, Epub and Kindle

Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.