Classification and Data Mining

Classification and Data Mining
Title Classification and Data Mining PDF eBook
Author Antonio Giusti
Publisher Springer Science & Business Media
Pages 291
Release 2012-12-18
Genre Mathematics
ISBN 3642288944

Download Classification and Data Mining Book in PDF, Epub and Kindle

​​​​​​​​​This volume contains both methodological papers showing new original methods, and papers on applications illustrating how new domain-specific knowledge can be made available from data by clever use of data analysis methods. The volume is subdivided in three parts: Classification and Data Analysis; Data Mining; and Applications. The selection of peer reviewed papers had been presented at a meeting of classification societies held in Florence, Italy, in the area of "Classification and Data Mining".​

Data Classification

Data Classification
Title Data Classification PDF eBook
Author Charu C. Aggarwal
Publisher CRC Press
Pages 710
Release 2014-07-25
Genre Business & Economics
ISBN 1498760589

Download Data Classification Book in PDF, Epub and Kindle

Comprehensive Coverage of the Entire Area of ClassificationResearch on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlyi

Classification, Clustering, and Data Mining Applications

Classification, Clustering, and Data Mining Applications
Title Classification, Clustering, and Data Mining Applications PDF eBook
Author David Banks
Publisher Springer Science & Business Media
Pages 642
Release 2011-01-07
Genre Language Arts & Disciplines
ISBN 3642171036

Download Classification, Clustering, and Data Mining Applications Book in PDF, Epub and Kindle

This volume describes new methods with special emphasis on classification and cluster analysis. These methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.

Data Mining and Machine Learning

Data Mining and Machine Learning
Title Data Mining and Machine Learning PDF eBook
Author Mohammed J. Zaki
Publisher Cambridge University Press
Pages 779
Release 2020-01-30
Genre Business & Economics
ISBN 1108473989

Download Data Mining and Machine Learning Book in PDF, Epub and Kindle

New to the second edition of this advanced text are several chapters on regression, including neural networks and deep learning.

Text Mining

Text Mining
Title Text Mining PDF eBook
Author Ashok N. Srivastava
Publisher CRC Press
Pages 330
Release 2009-06-15
Genre Business & Economics
ISBN 1420059459

Download Text Mining Book in PDF, Epub and Kindle

The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te

Cognitive Analytics: Concepts, Methodologies, Tools, and Applications

Cognitive Analytics: Concepts, Methodologies, Tools, and Applications
Title Cognitive Analytics: Concepts, Methodologies, Tools, and Applications PDF eBook
Author Management Association, Information Resources
Publisher IGI Global
Pages 1961
Release 2020-03-06
Genre Science
ISBN 1799824616

Download Cognitive Analytics: Concepts, Methodologies, Tools, and Applications Book in PDF, Epub and Kindle

Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries, including business and healthcare. It is necessary to develop specific software programs that can analyze and interpret large amounts of data quickly in order to ensure adequate usage and predictive results. Cognitive Analytics: Concepts, Methodologies, Tools, and Applications provides emerging perspectives on the theoretical and practical aspects of data analysis tools and techniques. It also examines the incorporation of pattern management as well as decision-making and prediction processes through the use of data management and analysis. Highlighting a range of topics such as natural language processing, big data, and pattern recognition, this multi-volume book is ideally designed for information technology professionals, software developers, data analysts, graduate-level students, researchers, computer engineers, software engineers, IT specialists, and academicians.

Lecture Notes in Data Mining

Lecture Notes in Data Mining
Title Lecture Notes in Data Mining PDF eBook
Author Michael W. Berry
Publisher World Scientific
Pages 238
Release 2006
Genre Computers
ISBN 9812773630

Download Lecture Notes in Data Mining Book in PDF, Epub and Kindle

The continual explosion of information technology and the need for better data collection and management methods has made data mining an even more relevant topic of study. Books on data mining tend to be either broad and introductory or focus on some very specific technical aspect of the field. This book is a series of seventeen edited OC student-authored lecturesOCO which explore in depth the core of data mining (classification, clustering and association rules) by offering overviews that include both analysis and insight. The initial chapters lay a framework of data mining techniques by explaining some of the basics such as applications of Bayes Theorem, similarity measures, and decision trees. Before focusing on the pillars of classification, clustering and association rules, the book also considers alternative candidates such as point estimation and genetic algorithms. The book''s discussion of classification includes an introduction to decision tree algorithms, rule-based algorithms (a popular alternative to decision trees) and distance-based algorithms. Five of the lecture-chapters are devoted to the concept of clustering or unsupervised classification. The functionality of hierarchical and partitional clustering algorithms is also covered as well as the efficient and scalable clustering algorithms used in large databases. The concept of association rules in terms of basic algorithms, parallel and distributive algorithms and advanced measures that help determine the value of association rules are discussed. The final chapter discusses algorithms for spatial data mining. Sample Chapter(s). Chapter 1: Point Estimation Algorithms (397 KB). Contents: Point Estimation Algorithms; Applications of Bayes Theorem; Similarity Measures; Decision Trees; Genetic Algorithms; Classification: Distance Based Algorithms; Decision Tree-Based Algorithms; Covering (Rule-Based) Algorithms; Clustering: An Overview; Clustering Hierarchical Algorithms; Clustering Partitional Algorithms; Clustering: Large Databases; Clustering Categorical Attributes; Association Rules: An Overview; Association Rules: Parallel and Distributed Algorithms; Association Rules: Advanced Techniques and Measures; Spatial Mining: Techniques and Algorithms. Readership: An introductory data mining textbook or a technical data mining book for an upper level undergraduate or graduate level course."