Discrete Differential Geometry

Discrete Differential Geometry
Title Discrete Differential Geometry PDF eBook
Author Alexander I. Bobenko
Publisher American Mathematical Society
Pages 432
Release 2023-09-14
Genre Mathematics
ISBN 1470474565

Download Discrete Differential Geometry Book in PDF, Epub and Kindle

An emerging field of discrete differential geometry aims at the development of discrete equivalents of notions and methods of classical differential geometry. The latter appears as a limit of a refinement of the discretization. Current interest in discrete differential geometry derives not only from its importance in pure mathematics but also from its applications in computer graphics, theoretical physics, architecture, and numerics. Rather unexpectedly, the very basic structures of discrete differential geometry turn out to be related to the theory of integrable systems. One of the main goals of this book is to reveal this integrable structure of discrete differential geometry. For a given smooth geometry one can suggest many different discretizations. Which one is the best? This book answers this question by providing fundamental discretization principles and applying them to numerous concrete problems. It turns out that intelligent theoretical discretizations are distinguished also by their good performance in applications. The intended audience of this book is threefold. It is a textbook on discrete differential geometry and integrable systems suitable for a one semester graduate course. On the other hand, it is addressed to specialists in geometry and mathematical physics. It reflects the recent progress in discrete differential geometry and contains many original results. The third group of readers at which this book is targeted is formed by specialists in geometry processing, computer graphics, architectural design, numerical simulations, and animation. They may find here answers to the question “How do we discretize differential geometry?” arising in their specific field. Prerequisites for reading this book include standard undergraduate background (calculus and linear algebra). No knowledge of differential geometry is expected, although some familiarity with curves and surfaces can be helpful.

An Excursion Through Discrete Differential Geometry

An Excursion Through Discrete Differential Geometry
Title An Excursion Through Discrete Differential Geometry PDF eBook
Author American Mathematical Society. Short Course, Discrete Differential Geometry
Publisher American Mathematical Soc.
Pages 140
Release 2020-09-02
Genre Education
ISBN 1470446626

Download An Excursion Through Discrete Differential Geometry Book in PDF, Epub and Kindle

Discrete Differential Geometry (DDG) is an emerging discipline at the boundary between mathematics and computer science. It aims to translate concepts from classical differential geometry into a language that is purely finite and discrete, and can hence be used by algorithms to reason about geometric data. In contrast to standard numerical approximation, the central philosophy of DDG is to faithfully and exactly preserve key invariants of geometric objects at the discrete level. This process of translation from smooth to discrete helps to both illuminate the fundamental meaning behind geometric ideas and provide useful algorithmic guarantees. This volume is based on lectures delivered at the 2018 AMS Short Course ``Discrete Differential Geometry,'' held January 8-9, 2018, in San Diego, California. The papers in this volume illustrate the principles of DDG via several recent topics: discrete nets, discrete differential operators, discrete mappings, discrete conformal geometry, and discrete optimal transport.

Classical and Discrete Differential Geometry

Classical and Discrete Differential Geometry
Title Classical and Discrete Differential Geometry PDF eBook
Author David Xianfeng Gu
Publisher CRC Press
Pages 690
Release 2023-01-31
Genre Computers
ISBN 1000804461

Download Classical and Discrete Differential Geometry Book in PDF, Epub and Kindle

This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks. With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation. The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.

Geometry II

Geometry II
Title Geometry II PDF eBook
Author E.B. Vinberg
Publisher Springer Science & Business Media
Pages 263
Release 2013-04-17
Genre Mathematics
ISBN 3662029014

Download Geometry II Book in PDF, Epub and Kindle

A very clear account of the subject from the viewpoints of elementary geometry, Riemannian geometry and group theory – a book with no rival in the literature. Mostly accessible to first-year students in mathematics, the book also includes very recent results which will be of interest to researchers in this field.

Classical and Discrete Functional Analysis with Measure Theory

Classical and Discrete Functional Analysis with Measure Theory
Title Classical and Discrete Functional Analysis with Measure Theory PDF eBook
Author Martin Buntinas
Publisher Cambridge University Press
Pages 471
Release 2022-01-20
Genre Mathematics
ISBN 1107034140

Download Classical and Discrete Functional Analysis with Measure Theory Book in PDF, Epub and Kindle

This advanced undergraduate/beginning graduate text covers measure theory and discrete aspects of functional analysis, with 760 exercises.

An Introduction to Differential Geometry

An Introduction to Differential Geometry
Title An Introduction to Differential Geometry PDF eBook
Author T. J. Willmore
Publisher Courier Corporation
Pages 338
Release 2013-05-13
Genre Mathematics
ISBN 0486282104

Download An Introduction to Differential Geometry Book in PDF, Epub and Kindle

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Functional Differential Geometry

Functional Differential Geometry
Title Functional Differential Geometry PDF eBook
Author Gerald Jay Sussman
Publisher MIT Press
Pages 249
Release 2013-07-05
Genre Mathematics
ISBN 0262019345

Download Functional Differential Geometry Book in PDF, Epub and Kindle

An explanation of the mathematics needed as a foundation for a deep understanding of general relativity or quantum field theory. Physics is naturally expressed in mathematical language. Students new to the subject must simultaneously learn an idiomatic mathematical language and the content that is expressed in that language. It is as if they were asked to read Les Misérables while struggling with French grammar. This book offers an innovative way to learn the differential geometry needed as a foundation for a deep understanding of general relativity or quantum field theory as taught at the college level. The approach taken by the authors (and used in their classes at MIT for many years) differs from the conventional one in several ways, including an emphasis on the development of the covariant derivative and an avoidance of the use of traditional index notation for tensors in favor of a semantically richer language of vector fields and differential forms. But the biggest single difference is the authors' integration of computer programming into their explanations. By programming a computer to interpret a formula, the student soon learns whether or not a formula is correct. Students are led to improve their program, and as a result improve their understanding.