Classic Works of the Dempster-Shafer Theory of Belief Functions
Title | Classic Works of the Dempster-Shafer Theory of Belief Functions PDF eBook |
Author | Ronald R. Yager |
Publisher | Springer Science & Business Media |
Pages | 813 |
Release | 2008-02-22 |
Genre | Mathematics |
ISBN | 3540253815 |
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
Classic Works of the Dempster-Shafer Theory of Belief Functions
Title | Classic Works of the Dempster-Shafer Theory of Belief Functions PDF eBook |
Author | Ronald R. Yager |
Publisher | Springer |
Pages | 813 |
Release | 2008-01-22 |
Genre | Technology & Engineering |
ISBN | 354044792X |
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
Classic Works of the Dempster-Shafer Theory of Belief Functions
Title | Classic Works of the Dempster-Shafer Theory of Belief Functions PDF eBook |
Author | Ronald R. Yager |
Publisher | Springer |
Pages | 0 |
Release | 2010-11-23 |
Genre | Mathematics |
ISBN | 9783642064784 |
This is a collection of classic research papers on the Dempster-Shafer theory of belief functions. The book is the authoritative reference in the field of evidential reasoning and an important archival reference in a wide range of areas including uncertainty reasoning in artificial intelligence and decision making in economics, engineering, and management. The book includes a foreword reflecting the development of the theory in the last forty years.
A Mathematical Theory of Evidence
Title | A Mathematical Theory of Evidence PDF eBook |
Author | Glenn Shafer |
Publisher | Princeton University Press |
Pages | |
Release | 2020-06-30 |
Genre | Mathematics |
ISBN | 0691214697 |
Both in science and in practical affairs we reason by combining facts only inconclusively supported by evidence. Building on an abstract understanding of this process of combination, this book constructs a new theory of epistemic probability. The theory draws on the work of A. P. Dempster but diverges from Depster's viewpoint by identifying his "lower probabilities" as epistemic probabilities and taking his rule for combining "upper and lower probabilities" as fundamental. The book opens with a critique of the well-known Bayesian theory of epistemic probability. It then proceeds to develop an alternative to the additive set functions and the rule of conditioning of the Bayesian theory: set functions that need only be what Choquet called "monotone of order of infinity." and Dempster's rule for combining such set functions. This rule, together with the idea of "weights of evidence," leads to both an extensive new theory and a better understanding of the Bayesian theory. The book concludes with a brief treatment of statistical inference and a discussion of the limitations of epistemic probability. Appendices contain mathematical proofs, which are relatively elementary and seldom depend on mathematics more advanced that the binomial theorem.
Evidence Theory and Its Applications
Title | Evidence Theory and Its Applications PDF eBook |
Author | Jiwen W. Guan |
Publisher | |
Pages | 692 |
Release | 1991 |
Genre | Computers |
ISBN |
An introduction to evidence theory and its applications is presented in this book. It is based on the important Dempster-Shafer theory, which significantly generalizes classic Bayesian statistics and has proved to be useful in a variety of applications. The aim of the volume is to bring the theory up to date by focusing, in particular, on key work by Shafer and Logan as well as on some of the authors' own contributions. as: artificial intelligence, expert systems, information systems, computer science, decision making, problem solving, business management, statistics, and mathematics. This systematic self-contained description of evidence theory based on set theory is suitable for both lectures and self-study and should serve to strengthen the reader's background and problem-solving abilities.
On the belief universal gravitation (BUG)
Title | On the belief universal gravitation (BUG) PDF eBook |
Author | Xiangjun Mi |
Publisher | Infinite Study |
Pages | 30 |
Release | |
Genre | Mathematics |
ISBN |
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Belief Functions: Theory and Applications
Title | Belief Functions: Theory and Applications PDF eBook |
Author | Jiřina Vejnarová |
Publisher | Springer |
Pages | 255 |
Release | 2016-09-07 |
Genre | Computers |
ISBN | 3319455591 |
This book constitutes the thoroughly refereed proceedings of the 4th International Conference on Belief Functions, BELIEF 2016, held in Prague, Czech Republic, in September 2016. The 25 revised full papers presented in this book were carefully selected and reviewed from 33 submissions. The papers describe recent developments of theoretical issues and applications in various areas such as combination rules; conflict management; generalized information theory; image processing; material sciences; navigation.