Class Field Theory

Class Field Theory
Title Class Field Theory PDF eBook
Author Nancy Childress
Publisher Springer Science & Business Media
Pages 230
Release 2008-10-28
Genre Mathematics
ISBN 0387724907

Download Class Field Theory Book in PDF, Epub and Kindle

Class field theory brings together the quadratic and higher reciprocity laws of Gauss, Legendre, and others, and vastly generalizes them. This book provides an accessible introduction to class field theory. It takes a traditional approach in that it attempts to present the material using the original techniques of proof, but in a fashion which is cleaner and more streamlined than most other books on this topic. It could be used for a graduate course on algebraic number theory, as well as for students who are interested in self-study. The book has been class-tested, and the author has included lots of challenging exercises throughout the text.

Class Field Theory

Class Field Theory
Title Class Field Theory PDF eBook
Author Georges Gras
Publisher Springer Science & Business Media
Pages 517
Release 2013-11-11
Genre Mathematics
ISBN 3662113236

Download Class Field Theory Book in PDF, Epub and Kindle

Global class field theory is a major achievement of algebraic number theory based on the functorial properties of the reciprocity map and the existence theorem. This book explores the consequences and the practical use of these results in detailed studies and illustrations of classical subjects. In the corrected second printing 2005, the author improves many details all through the book.

Class Field Theory

Class Field Theory
Title Class Field Theory PDF eBook
Author J. Neukirch
Publisher Springer Science & Business Media
Pages 148
Release 2012-12-06
Genre Mathematics
ISBN 364282465X

Download Class Field Theory Book in PDF, Epub and Kindle

Class field theory, which is so immediately compelling in its main assertions, has, ever since its invention, suffered from the fact that its proofs have required a complicated and, by comparison with the results, rather imper spicuous system of arguments which have tended to jump around all over the place. My earlier presentation of the theory [41] has strengthened me in the belief that a highly elaborate mechanism, such as, for example, cohomol ogy, might not be adequate for a number-theoretical law admitting a very direct formulation, and that the truth of such a law must be susceptible to a far more immediate insight. I was determined to write the present, new account of class field theory by the discovery that, in fact, both the local and the global reciprocity laws may be subsumed under a purely group theoretical principle, admitting an entirely elementary description. This de scription makes possible a new foundation for the entire theory. The rapid advance to the main theorems of class field theory which results from this approach has made it possible to include in this volume the most important consequences and elaborations, and further related theories, with the excep tion of the cohomology version which I have this time excluded. This remains a significant variant, rich in application, but its principal results should be directly obtained from the material treated here.

Algebraic Groups and Class Fields

Algebraic Groups and Class Fields
Title Algebraic Groups and Class Fields PDF eBook
Author Jean-Pierre Serre
Publisher Springer Science & Business Media
Pages 220
Release 2012-12-06
Genre Mathematics
ISBN 1461210356

Download Algebraic Groups and Class Fields Book in PDF, Epub and Kindle

Translation of the French Edition

Galois Cohomology and Class Field Theory

Galois Cohomology and Class Field Theory
Title Galois Cohomology and Class Field Theory PDF eBook
Author David Harari
Publisher Springer Nature
Pages 336
Release 2020-06-24
Genre Mathematics
ISBN 3030439011

Download Galois Cohomology and Class Field Theory Book in PDF, Epub and Kindle

This graduate textbook offers an introduction to modern methods in number theory. It gives a complete account of the main results of class field theory as well as the Poitou-Tate duality theorems, considered crowning achievements of modern number theory. Assuming a first graduate course in algebra and number theory, the book begins with an introduction to group and Galois cohomology. Local fields and local class field theory, including Lubin-Tate formal group laws, are covered next, followed by global class field theory and the description of abelian extensions of global fields. The final part of the book gives an accessible yet complete exposition of the Poitou-Tate duality theorems. Two appendices cover the necessary background in homological algebra and the analytic theory of Dirichlet L-series, including the Čebotarev density theorem. Based on several advanced courses given by the author, this textbook has been written for graduate students. Including complete proofs and numerous exercises, the book will also appeal to more experienced mathematicians, either as a text to learn the subject or as a reference.

A Gentle Course in Local Class Field Theory

A Gentle Course in Local Class Field Theory
Title A Gentle Course in Local Class Field Theory PDF eBook
Author Pierre Guillot
Publisher Cambridge University Press
Pages 309
Release 2018-11
Genre Mathematics
ISBN 1108421776

Download A Gentle Course in Local Class Field Theory Book in PDF, Epub and Kindle

A self-contained exposition of local class field theory for students in advanced algebra.

Class Field Theory

Class Field Theory
Title Class Field Theory PDF eBook
Author Jürgen Neukirch
Publisher Springer Science & Business Media
Pages 195
Release 2013-04-08
Genre Mathematics
ISBN 3642354378

Download Class Field Theory Book in PDF, Epub and Kindle

The present manuscript is an improved edition of a text that first appeared under the same title in Bonner Mathematische Schriften, no.26, and originated from a series of lectures given by the author in 1965/66 in Wolfgang Krull's seminar in Bonn. Its main goal is to provide the reader, acquainted with the basics of algebraic number theory, a quick and immediate access to class field theory. This script consists of three parts, the first of which discusses the cohomology of finite groups. The second part discusses local class field theory, and the third part concerns the class field theory of finite algebraic number fields.