Chemical Relaxation in Molecular Biology
Title | Chemical Relaxation in Molecular Biology PDF eBook |
Author | I. Pecht |
Publisher | Springer Science & Business Media |
Pages | 435 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 3642811175 |
The development of an area of scientific research is a dynamic process with its own kinetic equations and its own physical mech anism. The study of fast chemical interactions and transformations is such an area, and while it is tempting to draw analogies or to speculate about the simplest model system, the lack of ade quately averaged observables is an annoying obstacle to such an undertaking. Sciences suffering from such conditions usually avoid quantitative models, be they primitive or complex. Instead, they prove their point by "case histories". Chemical relaxation kinetics started as an offspring of research in acoustics. In some aqueous ionic solutions anomalous acoustic absorption had been observed. A systematic study traced the cause of this absorption, showing that the covered frequency range and the intensity of the absorption were related in a predictable manner to the rate at which ions can interact and form structures differing in volume from the non interacting species. The step from this experimental observation and its correct, non trivial explanation to the discovery that all fast chemical pro cesses must reveal themselves quantitatively in the relaxation rate of a perturbed equilibrium state, and that perturbation para meters other than sound waves can be used for its exploitation, was made by MANFRED EIGEN in 1954. The foresightedness of K.F.
Chemical Dynamics in Condensed Phases
Title | Chemical Dynamics in Condensed Phases PDF eBook |
Author | Abraham Nitzan |
Publisher | Oxford University Press |
Pages | 743 |
Release | 2006-04-06 |
Genre | Science |
ISBN | 9780198529798 |
Graduate level textbook presenting some of the most fundamental processes that underlie physical, chemical and biological phenomena in complex condensed phase systems. Includes in-depth descriptions of relevant methodologies, and provides ample introductory material for readers of different backgrounds.
Chemical and Biological Applications of Relaxation Spectrometry
Title | Chemical and Biological Applications of Relaxation Spectrometry PDF eBook |
Author | E. Wyn-Jones |
Publisher | Springer Science & Business Media |
Pages | 504 |
Release | 2012-12-06 |
Genre | Science |
ISBN | 9401018553 |
Chemical relaxation spectrometry involves the application of several different relaxation techniques to investigate the kinetics and mechanisms of fast chemical reactions and also dynamic molecul 10 ar processes that occur in liquids in the time range 1 - 10- secs. These methods have been used widely in several disciplines of the natural sciences including molecular biology, biochemistry, organic stereochemistry, detergent chemistry and inorganic chemistry. The purpose of the Advanced Study Institute was to provide a forum for scientists to discuss the role, scope and limitations of the various applications of chemical relaxation methods in order to stimulate discussion and interaction between workers in these different fields. The papers described in this volume are a summary of the contributions that were discussed at the meeting. The brief given to the authors was to attempt to prepare an article contain ing a good supply of references so that the book can be used not only by those starting in the field, but also by the specialist and research worker. These contributions cover a varied range of topics summarizing the achievements, the current state of knowledge and possible application in many disciplines. It is to be hoped that this volume will help to point out some new directions towards which research efforts are required and to attract new researchers with fresh points of view.
Structural Molecular Biology
Title | Structural Molecular Biology PDF eBook |
Author | David Davies |
Publisher | Springer Science & Business Media |
Pages | 528 |
Release | 2013-03-09 |
Genre | Science |
ISBN | 1468442201 |
Structural biology is undergoing a revolution in both the sophistication of new biophysical methods and the complexity of problems in biomolecular structure and organization opened up for study. These changes are directly attributable to major advances in computer technology, computational methods, development of high intensity synchrotron radiation sources, new magnetic resonance methods, laser optical techniques, etc. Structure-function problems previously considered intractable may now be solved. As this area of specialisation continues to expand, there is a need to review the various physical methods currently being used and developed in struc tural molecular biology. At the same time that individual techniques and their applications become more specialized, the need for effect ive communication between investigators gains in imperative. It is vital to forge links among sub-disciplines and to emphasise the complementary nature of results observed by different biophysical methods. This publication contains the review lectures given at a meeting on "Current Methods in Structural Molecular Biology" spon sored by NATO as an Advanced Study Institute and by FEBS ~s Advanced Course No. 78. The aim of the meeting was to bring together, in a teaching environment, students and specialists in diverse biophysical methodologies with the specific purpose of exploring, questioning and critically assessing the present and future state of biological structure research. The scientific content of the interdisciplinary Study Institute centred around three interrelated aspects; biophysical methods and instrumentation, their application to biological structure problems, and derivation of structural information and insights.
Molecular Biology in Medicinal Chemistry
Title | Molecular Biology in Medicinal Chemistry PDF eBook |
Author | Theodor Dingermann |
Publisher | John Wiley & Sons |
Pages | 435 |
Release | 2006-03-06 |
Genre | Science |
ISBN | 3527605185 |
This readily comprehensible book explains the identification of molecular targets via cellular assays, reporter genes or transgenic models, as well as surveying recent advances in the synthesis, separation and analysis of drugs. A special section is devoted to molecular genetics methods. With its examination of these novel methods and generous practical advice, this is essential reading for all pharmaceutical chemists, molecular biologists and medical researchers using molecular methods to study drugs and their action.
Advanced Diffusion Encoding Methods in MRI
Title | Advanced Diffusion Encoding Methods in MRI PDF eBook |
Author | Daniel Topgaard |
Publisher | Royal Society of Chemistry |
Pages | 455 |
Release | 2020-08-17 |
Genre | Medical |
ISBN | 1788017269 |
The medical MRI community is by far the largest user of diffusion NMR techniques and this book captures the current surge of methods and provides a primary source to aid adoption in this field. There is a trend to adapting the more advanced diffusion encoding sequences developed by NMR researchers within the fields of porous media, chemical engineering, and colloid science to medical research. Recently published papers indicate great potential for improved diagnosis of the numerous pathological conditions associated with changes of tissue microstructure that are invisible to conventional diffusion MRI. This book disseminates these recent developments to the wider community of MRI researchers and clinicians. The chapters cover the theoretical basis, hardware and pulse sequences, data analysis and validation, and recent applications aimed at promoting further growth in the field. This is a fast moving field and chapters are written by key MRI scientists that have contributed to the successful translation of the advanced diffusion NMR methods to the context of medical MRI, from global locations.
Chemical Relaxation in Molecular Biology
Title | Chemical Relaxation in Molecular Biology PDF eBook |
Author | I. Pecht |
Publisher | Springer |
Pages | 418 |
Release | 1977-08-01 |
Genre | Science |
ISBN | 9783540081739 |
The development of an area of scientific research is a dynamic process with its own kinetic equations and its own physical mech anism. The study of fast chemical interactions and transformations is such an area, and while it is tempting to draw analogies or to speculate about the simplest model system, the lack of ade quately averaged observables is an annoying obstacle to such an undertaking. Sciences suffering from such conditions usually avoid quantitative models, be they primitive or complex. Instead, they prove their point by "case histories". Chemical relaxation kinetics started as an offspring of research in acoustics. In some aqueous ionic solutions anomalous acoustic absorption had been observed. A systematic study traced the cause of this absorption, showing that the covered frequency range and the intensity of the absorption were related in a predictable manner to the rate at which ions can interact and form structures differing in volume from the non interacting species. The step from this experimental observation and its correct, non trivial explanation to the discovery that all fast chemical pro cesses must reveal themselves quantitatively in the relaxation rate of a perturbed equilibrium state, and that perturbation para meters other than sound waves can be used for its exploitation, was made by MANFRED EIGEN in 1954. The foresightedness of K.F.