Charming Proofs
Title | Charming Proofs PDF eBook |
Author | Claudi Alsina |
Publisher | MAA |
Pages | 321 |
Release | 2010 |
Genre | Mathematics |
ISBN | 0883853485 |
Theorems and their proofs lie at the heart of mathematics. In speaking of the purely aesthetic qualities of theorems and proofs, G. H. Hardy wrote that in beautiful proofs 'there is a very high degree of unexpectedness, combined with inevitability and economy'. Charming Proofs presents a collection of remarkable proofs in elementary mathematics that are exceptionally elegant, full of ingenuity, and succinct. By means of a surprising argument or a powerful visual representation, the proofs in this collection will invite readers to enjoy the beauty of mathematics, and to develop the ability to create proofs themselves. The authors consider proofs from topics such as geometry, number theory, inequalities, plane tilings, origami and polyhedra. Secondary school and university teachers can use this book to introduce their students to mathematical elegance. More than 130 exercises for the reader (with solutions) are also included.
Proofs from THE BOOK
Title | Proofs from THE BOOK PDF eBook |
Author | Martin Aigner |
Publisher | Springer Science & Business Media |
Pages | 194 |
Release | 2013-06-29 |
Genre | Mathematics |
ISBN | 3662223430 |
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Proofs Without Words
Title | Proofs Without Words PDF eBook |
Author | Roger B. Nelsen |
Publisher | MAA |
Pages | 166 |
Release | 1993 |
Genre | Logic, Symbolic and mathematical |
ISBN | 9780883857007 |
Q.E.D.
Title | Q.E.D. PDF eBook |
Author | |
Publisher | Bloomsbury Publishing USA |
Pages | 65 |
Release | 2004-05-01 |
Genre | Mathematics |
ISBN | 0802714315 |
Q.E.D. presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.
Icons of Mathematics
Title | Icons of Mathematics PDF eBook |
Author | Claudi Alsina |
Publisher | MAA |
Pages | 348 |
Release | 2011-08-04 |
Genre | Mathematics |
ISBN | 0883853523 |
An exploration of the mathematics of twenty geometric diagrams that play a crucial role in visualizing mathematical proofs. Those teaching undergraduate mathematics will find material here for problem solving sessions, as well as enrichment material for courses on proofs and mathematical reasoning.
Conjecture and Proof
Title | Conjecture and Proof PDF eBook |
Author | Miklos Laczkovich |
Publisher | American Mathematical Soc. |
Pages | 131 |
Release | 2001-12-31 |
Genre | Mathematics |
ISBN | 1470458322 |
The Budapest semesters in mathematics were initiated with the aim of offering undergraduate courses that convey the tradition of Hungarian mathematics to English-speaking students. This book is an elaborate version of the course on Conjecture and Proof. It gives miniature introductions to various areas of mathematics by presenting some interesting and important, but easily accessible results and methods. The text contains complete proofs of deep results such as the transcendence of $e$, the Banach-Tarski paradox and the existence of Borel sets of arbitrary (finite) class. One of the purposes is to demonstrate how far one can get from the first principles in just a couple of steps. Prerequisites are kept to a minimum, and any introductory calculus course provides the necessary background for understanding the book. Exercises are included for the benefit of students. However, this book should prove fascinating for any mathematically literate reader.
The Pythagorean Theorem
Title | The Pythagorean Theorem PDF eBook |
Author | Eli Maor |
Publisher | Princeton University Press |
Pages | 284 |
Release | 2019-11-19 |
Genre | Mathematics |
ISBN | 0691196885 |
Frontmatter --Contents --List of Color Plates --Preface --Prologue: Cambridge, England, 1993 --1. Mesopotamia, 1800 BCE --Sidebar 1: Did the Egyptians Know It? --2. Pythagoras --3. Euclid's Elements --Sidebar 2: The Pythagorean Theorem in Art, Poetry, and Prose --4. Archimedes --5. Translators and Commentators, 500-1500 CE --6. François Viète Makes History --7. From the Infinite to the Infinitesimal --Sidebar 3: A Remarkable Formula by Euler --8. 371 Proofs, and Then Some --Sidebar 4: The Folding Bag --Sidebar 5: Einstein Meets Pythagoras --Sidebar 6: A Most Unusual Proof --9. A Theme and Variations --Sidebar 7: A Pythagorean Curiosity --Sidebar 8: A Case of Overuse --10. Strange Coordinates --11. Notation, Notation, Notation --12. From Flat Space to Curved Spacetime --Sidebar 9: A Case of Misuse --13. Prelude to Relativity --14. From Bern to Berlin, 1905-1915 --Sidebar 10: Four Pythagorean Brainteasers --15. But Is It Universal? --16. Afterthoughts --Epilogue: Samos, 2005 --Appendixes --Chronology --Bibliography --Illustrations Credits --Index.