Characterization of Devices and Materials for Gallium Nitride and Diamond Thermal Management Applications

Characterization of Devices and Materials for Gallium Nitride and Diamond Thermal Management Applications
Title Characterization of Devices and Materials for Gallium Nitride and Diamond Thermal Management Applications PDF eBook
Author Bobby Logan Hancock
Publisher
Pages 294
Release 2016
Genre Electronics
ISBN

Download Characterization of Devices and Materials for Gallium Nitride and Diamond Thermal Management Applications Book in PDF, Epub and Kindle

As trends progress toward higher power applications in GaN-based electronic and photonic devices, the issue of self-heating becomes a prominent concern. This is especially the case for high-brightness light-emitting diodes (LEDs) and high electron mobility transistors (HEMTs), where the bulk of power dissipation occurs within a small (sub-micron) region resulting in highly localized temperature rises during operation. Monitoring these thermal effects becomes critical as they significantly affect performance, reliability, and overall device lifetime. In response to these issues, diamond grown by chemical vapor deposition (CVD) has emerged as a promising material in III-nitride thermal management as a heat-spreading substrate due to its exceptional thermal conductivity. This work is aimed toward the characterization of self-heating and thermal management technologies in GaN electronic and photonic devices and their materials. The two main components of this dissertation include assessing self-heating in these devices through direct measurement of temperature rises in high-power LEDs and GaN HEMTs and qualifying thermal management approaches through the characterization of thermal conductivity and material quality in CVD diamond and its incorporation into GaN device layers. The purpose of this work is to further the understanding of thermal effects in III-nitride materials as well as provide useful contributions to the development of future thermal management technologies in GaN device applications.

Thermal Management of Gallium Nitride Electronics

Thermal Management of Gallium Nitride Electronics
Title Thermal Management of Gallium Nitride Electronics PDF eBook
Author Marko Tadjer
Publisher Woodhead Publishing
Pages 498
Release 2022-07-13
Genre Technology & Engineering
ISBN 0128211059

Download Thermal Management of Gallium Nitride Electronics Book in PDF, Epub and Kindle

Thermal Management of Gallium Nitride Electronics outlines the technical approaches undertaken by leaders in the community, the challenges they have faced, and the resulting advances in the field. This book serves as a one-stop reference for compound semiconductor device researchers tasked with solving this engineering challenge for future material systems based on ultra-wide bandgap semiconductors. A number of perspectives are included, such as the growth methods of nanocrystalline diamond, the materials integration of polycrystalline diamond through wafer bonding, and the new physics of thermal transport across heterogeneous interfaces. Over the past 10 years, the book's authors have performed pioneering experiments in the integration of nanocrystalline diamond capping layers into the fabrication process of compound semiconductor devices. Significant research efforts of integrating diamond and GaN have been reported by a number of groups since then, thus resulting in active thermal management options that do not necessarily lead to performance derating to avoid self-heating during radio frequency or power switching operation of these devices. Self-heating refers to the increased channel temperature caused by increased energy transfer from electrons to the lattice at high power. This book chronicles those breakthroughs. Includes the fundamentals of thermal management of wide-bandgap semiconductors, with historical context, a review of common heating issues, thermal transport physics, and characterization methods Reviews the latest strategies to overcome heating issues through materials modeling, growth and device design strategies Touches on emerging, real-world applications for thermal management strategies in power electronics

Multiphysics Characterization of GaN Materials and Devices for Power Applications

Multiphysics Characterization of GaN Materials and Devices for Power Applications
Title Multiphysics Characterization of GaN Materials and Devices for Power Applications PDF eBook
Author Atse Julien Eric N'Dohi
Publisher
Pages 0
Release 2023
Genre
ISBN

Download Multiphysics Characterization of GaN Materials and Devices for Power Applications Book in PDF, Epub and Kindle

Silicon power electronics has shown its limits due to its incapacity to sustain high voltage, high temperature and high frequency applications. Therefore, the need to resort to materials with larger band gap and solve silicon (Si) technological issues for high voltage operations has been getting more and more intense. Wide band gap materials such as Silicon Carbide (SiC), Gallium Nitride (GaN), and Diamond are very promising for power electronics because of their interesting physical properties such like high carrier mobility, high critical electric field and good thermal conductivity than Si that enable them to perform at high voltage and temperature domains. Semiconductors manufacturing companies indeed, consider them as potentials power or current converters, inverters and rectifers for improving home and industrial energy distribution and consumption in a better way. However, the road to get them into a larger mass production technology is still long because recent researches have shown that their performance is pinned by some physical phenomena such as structural defects appearance, strain and stress effects, doping and dopant control and effectivess and so on. Thus, ruling out these problems by a deep understanding of the physical mechanisms behind them is a key option in optimizing their performance. In this thesis, we confronted the physical and electrical properties of GaN material and devices through multiphysics and electrical characterizations approach such as micro Raman, cathodoluminescence and classical current-voltage I (V) measurements. The objective is to get an insight into the physical performance of these power electronic materials (SiC, GaN), especially of GaN based power devices due to their higher carrier mobility compared to SiC and their growing technology maturity for mass production and distribution; and suggest if possible, ways of optimizing their operating abilities at a micro level. The coupling of these characterization methods allow us to have a deep view of the physical mechanisms that support the high voltage or temperature operation of these GaN based materials and as well as help us to grab the discrepancy existing between physical theoretical parameters established through finite elements simulations and true experimental value.

Gallium Nitride Power Devices

Gallium Nitride Power Devices
Title Gallium Nitride Power Devices PDF eBook
Author Hongyu Yu
Publisher CRC Press
Pages 298
Release 2017-07-06
Genre Science
ISBN 1351767615

Download Gallium Nitride Power Devices Book in PDF, Epub and Kindle

GaN is considered the most promising material candidate in next-generation power device applications, owing to its unique material properties, for example, bandgap, high breakdown field, and high electron mobility. Therefore, GaN power device technologies are listed as the top priority to be developed in many countries, including the United States, the European Union, Japan, and China. This book presents a comprehensive overview of GaN power device technologies, for example, material growth, property analysis, device structure design, fabrication process, reliability, failure analysis, and packaging. It provides useful information to both students and researchers in academic and related industries working on GaN power devices. GaN wafer growth technology is from Enkris Semiconductor, currently one of the leading players in commercial GaN wafers. Chapters 3 and 7, on the GaN transistor fabrication process and GaN vertical power devices, are edited by Dr. Zhihong Liu, who has been working on GaN devices for more than ten years. Chapters 2 and 5, on the characteristics of polarization effects and the original demonstration of AlGaN/GaN heterojunction field-effect transistors, are written by researchers from Southwest Jiaotong University. Chapters 6, 8, and 9, on surface passivation, reliability, and package technologies, are edited by a group of researchers from the Southern University of Science and Technology of China.

Power GaN Devices

Power GaN Devices
Title Power GaN Devices PDF eBook
Author Matteo Meneghini
Publisher Springer
Pages 383
Release 2016-09-08
Genre Technology & Engineering
ISBN 3319431994

Download Power GaN Devices Book in PDF, Epub and Kindle

This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

Growth and Characterization of Nitride Semiconductors on Chemical Vapor Deposited Diamond

Growth and Characterization of Nitride Semiconductors on Chemical Vapor Deposited Diamond
Title Growth and Characterization of Nitride Semiconductors on Chemical Vapor Deposited Diamond PDF eBook
Author Raju Ahmed
Publisher
Pages 434
Release 2018
Genre Semiconductors
ISBN

Download Growth and Characterization of Nitride Semiconductors on Chemical Vapor Deposited Diamond Book in PDF, Epub and Kindle

Group III nitride semiconductor-based devices have emerged as the best candidates for handling higher power and frequency in recent years. Performance of various devices such AlGaN/ GaN high electron mobility transistors, GaN lasers and GaN LEDs are often hindered by self-heating of these materials and poor heat removal capabilities of the substrate materials. Chemical vapor deposited (CVD) diamond has demonstrated the best heat removal capability, when employed as the substrate material for GaN based high power devices, due to its high thermal conductivity. Diamond is either grown directly on the backside or bonded with GaN using an adhesion layer to extract excessive heat from the near junction region of these devices. In both cases, thermal resistance associated with the interface of diamond and GaN limits the effectiveness of the diamond layer. In this work, single crystal GaN has been grown using metal organic chemical vapor deposition (MOCVD) directly on chemical vapor deposited diamond without any adhesion layer in a novel way which will mitigate thermal resistance between the near junction region of GaN devices and diamond substrate. The growth of GaN-on-diamond was achieved through a series of experiments and characterizations in various steps of the process.

Gallium Nitride (GaN)

Gallium Nitride (GaN)
Title Gallium Nitride (GaN) PDF eBook
Author Farid Medjdoub
Publisher CRC Press
Pages 372
Release 2017-12-19
Genre Technology & Engineering
ISBN 1482220040

Download Gallium Nitride (GaN) Book in PDF, Epub and Kindle

Addresses a Growing Need for High-Power and High-Frequency Transistors Gallium Nitride (GaN): Physics, Devices, and Technology offers a balanced perspective on the state of the art in gallium nitride technology. A semiconductor commonly used in bright light-emitting diodes, GaN can serve as a great alternative to existing devices used in microelectronics. It has a wide band gap and high electron mobility that gives it special properties for applications in optoelectronic, high-power, and high-frequency devices, and because of its high off-state breakdown strength combined with excellent on-state channel conductivity, GaN is an ideal candidate for switching power transistors. Explores Recent Progress in High-Frequency GaN Technology Written by a panel of academic and industry experts from around the globe, this book reviews the advantages of GaN-based material systems suitable for high-frequency, high-power applications. It provides an overview of the semiconductor environment, outlines the fundamental device physics of GaN, and describes GaN materials and device structures that are needed for the next stage of microelectronics and optoelectronics. The book details the development of radio frequency (RF) semiconductor devices and circuits, considers the current challenges that the industry now faces, and examines future trends. In addition, the authors: Propose a design in which multiple LED stacks can be connected in a series using interband tunnel junction (TJ) interconnects Examine GaN technology while in its early stages of high-volume deployment in commercial and military products Consider the potential use of both sunlight and hydrogen as promising and prominent energy sources for this technology Introduce two unique methods, PEC oxidation and vapor cooling condensation methods, for the deposition of high-quality oxide layers A single-source reference for students and professionals, Gallium Nitride (GaN): Physics, Devices, and Technology provides an overall assessment of the semiconductor environment, discusses the potential use of GaN-based technology for RF semiconductor devices, and highlights the current and emerging applications of GaN.